

Welcome to the pysatNASA documentation

This documentation describes the pysatNASA module, which contains
routines to NASA space science data as pysat.Instrument objects through the
CDAWeb interface.

	Overview

	Installation
	Prerequisites

	Installation Options

	Post Installation

	Citation Guidelines
	pysatNASA

	Supported Instruments
	C/NOFS IVM
	References

	Properties

	Warnings

	C/NOFS PLP
	References

	Properties

	Warnings

	C/NOFS VEFI
	References

	Properties

	Note

	Warnings

	DE2 LANG
	References

	Properties

	Warnings

	DE2 NACS
	References

	Properties

	Warnings

	DE2 RPA
	References

	Properties

	Warnings

	DE2 WATS
	References

	Properties

	Warnings

	FORMOSAT-1 IVM
	Properties

	Warnings

	ICON EUV
	Properties

	Warnings

	Examples

	ICON FUV
	Properties

	Warnings

	Example

	ICON IVM
	Properties

	Example

	Author

	ICON MIGHTI
	Properties

	Warnings

	Example

	Note

	ISS FPMU
	Properties

	Warnings

	OMNI HRO
	Properties

	Note

	Warnings

	Custom Functions

	SES14 GOLD
	Properties

	Warnings

	Examples

	TIMED SABER
	Properties

	Note

	Warnings

	TIMED SEE
	Properties

	Note

	Warnings

	Supported Constellations
	DE2

	ICON

	Examples
	Loading ICON IVM data

	Guide for Developers
	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

	Contributing
	Short version

	Bug reports

	Feature requests and feedback

	Development

	Pull Request Guidelines

	Project Style Guidelines

	Migration from pysat 2
	Registering the pysatNASA library

	Modifying the directory structure

	A Note about ICON data

	Change Log
	[0.0.3] - 2022-05-18

	[0.0.2] - 2021-06-07

	[0.0.1] - 2020-08-13

Indices and tables

	Index

	Module Index

	Search Page

Overview

This is a library of pysat instrument modules and methods designed to support
NASA instruments and missions archived at the Community Data Analysis Web
portal.

[image: pysatNASA Logo, a blue planet with red orbiting python and the module name superimposed]

Installation

The following instructions will allow you to install pysatNASA.

Prerequisites

[image: powered by pysat Logo, blue planet with orbiting python]
pysatNASA uses common Python modules, as well as modules developed by
and for the Space Physics community. This module officially supports
Python 3.7+ and pysat 3.0.0+.

	Common modules

	Community modules

	beautifulsoup4

	cdflib>=0.4.4

	lxml

	pysat>=3.0.0

	netCDF4

	

	numpy

	

	pandas

	

	requests

	

	xarray

	

Installation Options

1. Clone the git repository

git clone https://github.com/pysat/pysatNASA.git

	Install pysatNASA:
Change directories into the repository folder and run the setup.py file.
There are a few ways you can do this:

	Install on the system (root privileges required):

sudo python setup.py install

	Install at the user level:

python setup.py install --user

	Install with the intent to develop locally:

python setup.py develop --user

Post Installation

After installation, you may register the pysatNASA
Instrument sub-modules with pysat. If this is your first time using
pysat, check out the quickstart guide [https://pysat.readthedocs.io/en/latest/quickstart.html] for pysat. Once pysat
is set up, you may choose to register the the pysatNASA
Instruments sub-modules by:

import pysat
import pysatNASA

pysat.utils.registry.register_by_module(pysatNASA.instruments)

You may then use the pysat platform and name keywords to
initialize the model Instrument instead of the
inst_module keyword argument.

Citation Guidelines

When publishing work that uses pysatNASA, please cite the package and
any package it depends on that plays an important role in your analysis.
Specifying which version of pysatNASA used will also improve the
reproducibility of your presented results.

pysatNASA

The most recent citation can be found at Zenodo [https://zenodo.org/record/3986131]. The examples here are from the first
release.

	Klenzing, J., et al. (2020).
pysat/pysatNASA: Initial Release (Version 0.0.1). Zenodo.
doi:10.5281/zenodo.3986132

@software{pysatNASA,
 author = {Klenzing, J. and
 Stoneback, R.A. and
 Burrell, A.G. and
 Pembroke, A. and
 Depew, M. and
 Spence, C.},
 title = {pysat/pysatNASA: Initial Release},
 month = aug,
 year = 2020,
 publisher = {Zenodo},
 version = {v0.0.1},
 doi = {10.5281/zenodo.3986132},
 url = {https://doi.org/10.5281/zenodo.3986132}
}

Supported Instruments

C/NOFS IVM

Module for the C/NOFS IVM instrument.

Supports the Ion Velocity Meter (IVM) onboard the Communication
and Navigation Outage Forecasting System (C/NOFS) satellite, part
of the Coupled Ion Netural Dynamics Investigation (CINDI). Downloads
data from the NASA Coordinated Data Analysis Web (CDAWeb) in CDF
format.

The IVM is composed of the Retarding Potential Analyzer (RPA) and
Drift Meter (DM). The RPA measures the energy of plasma along the
direction of satellite motion. By fitting these measurements
to a theoretical description of plasma the number density, plasma
composition, plasma temperature, and plasma motion may be determined.
The DM directly measures the arrival angle of plasma. Using the reported
motion of the satellite the angle is converted into ion motion along
two orthogonal directions, perpendicular to the satellite track.

References

A brief discussion of the C/NOFS mission and instruments can be found at
de La Beaujardière, O., et al. (2004), C/NOFS: A mission to forecast
scintillations, J. Atmos. Sol. Terr. Phys., 66, 1573–1591,
doi:10.1016/j.jastp.2004.07.030.

Discussion of cleaning parameters for ion drifts can be found in:
Burrell, Angeline G., Equatorial topside magnetic field-aligned ion drifts
at solar minimum, The University of Texas at Dallas, ProQuest
Dissertations Publishing, 2012. 3507604.

Discussion of cleaning parameters for ion temperature can be found in:
Hairston, M. R., W. R. Coley, and R. A. Heelis (2010), Mapping the
duskside topside ionosphere with CINDI and DMSP, J. Geophys. Res.,115,
A08324, doi:10.1029/2009JA015051.

Properties

	platform
	‘cnofs’

	name
	‘ivm’

	tag
	None supported

	inst_id
	None supported

Warnings

	The sampling rate of the instrument changes on July 29th, 2010.
The rate is attached to the instrument object as .sample_rate.

	The cleaning parameters for the instrument are still under development.

	
pysatNASA.instruments.cnofs_ivm.clean(self)

	Clean C/NOFS IVM data to the specified level.

	
pysatNASA.instruments.cnofs_ivm.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

	
pysatNASA.instruments.cnofs_ivm.preprocess(self)

	Apply C/NOFS IVM default attributes.

C/NOFS PLP

Module for the C/NOFS PLP instrument.

Supports the Planar Langmuir Probe (PLP) onboard the Communication
and Navigation Outage Forecasting System (C/NOFS) satellite. Downloads
data from the NASA Coordinated Data Analysis Web (CDAWeb).

Description from CDAWeb:

The Planar Langmuir Probe on C/NOFS is a suite of 2 current measuring sensors
mounted on the ram facing surface of the spacecraft. The primary sensor is an
Ion Trap (conceptually similar to RPAs flown on many other spacecraft) capable
of measuring ion densities as low as 1 cm-3 with a 12 bit log electrometer.
The secondary senor is a swept bias planar Langmuir probe (Surface Probe)
capable of measuring Ne, Te, and spacecraft potential.

The ion number density is the one second average of the ion density sampled at
either 32, 256, 512, or 1024 Hz (depending on the mode).

The ion density standard deviation is the standard deviation of the samples
used to produce the one second average number density.

DeltaN/N is the detrened ion number density 1 second standard deviation divided
by the mean 1 sec density.

The electron density, electron temperature, and spacecraft potential are all
derived from a least squares fit to the current-bias curve from the Surface
Probe.

The data is PRELIMINARY, and as such, is intended for BROWSE PURPOSES ONLY.

References

A brief discussion of the C/NOFS mission and instruments can be found at
de La Beaujardière, O., et al. (2004), C/NOFS: A mission to forecast
scintillations, J. Atmos. Sol. Terr. Phys., 66, 1573–1591,
doi:10.1016/j.jastp.2004.07.030.

Properties

	platform
	‘cnofs’

	name
	‘plp’

	tag
	None supported

	inst_id
	None supported

Warnings

	The data are PRELIMINARY, and as such, are intended for BROWSE PURPOSES ONLY.

	Currently no cleaning routine.

	Module not written by PLP team.

	
pysatNASA.instruments.cnofs_plp.clean(self)

	Clean C/NOFS PLP data to the specified level.

	
pysatNASA.instruments.cnofs_plp.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

C/NOFS VEFI

Module for the C/NOFS VEFI instrument.

Supports the Vector Electric Field Instrument (VEFI)
onboard the Communication and Navigation Outage Forecasting
System (C/NOFS) satellite. Downloads data from the
NASA Coordinated Data Analysis Web (CDAWeb).

Description from CDAWeb:

The DC vector magnetometer on the CNOFS spacecraft is a three axis, fluxgate
sensor with active thermal control situated on a 0.6m boom. This magnetometer
measures the Earth’s magnetic field using 16 bit A/D converters at 1 sample per
sec with a range of .. 45,000 nT. Its primary objective on the CNOFS
spacecraft is to enable an accurate V x B measurement along the spacecraft
trajectory. In order to provide an in-flight calibration of the magnetic field
data, we compare the most recent POMME model (the POtsdam Magnetic Model of the
Earth, http://geomag.org/models/pomme5.html) with the actual magnetometer
measurements to help determine a set of calibration parameters for the gains,
offsets, and non-orthogonality matrix of the sensor axes. The calibrated
magnetic field measurements are provided in the data file here. The VEFI
magnetic field data file currently contains the following variables:
B_north Magnetic field in the north direction
B_up Magnetic field in the up direction
B_west Magnetic field in the west direction

The data is PRELIMINARY, and as such, is intended for BROWSE PURPOSES ONLY.

References

A brief discussion of the C/NOFS mission and instruments can be found at
de La Beaujardière, O., et al. (2004), C/NOFS: A mission to forecast
scintillations, J. Atmos. Sol. Terr. Phys., 66, 1573–1591,
doi:10.1016/j.jastp.2004.07.030.

Properties

	platform
	‘cnofs’

	name
	‘vefi’

	tag
	Select measurement type, one of {‘dc_b’}

	inst_id
	None supported

Note

	tag = ‘dc_b’: 1 second DC magnetometer data

Warnings

	The data is PRELIMINARY, and as such, is intended for BROWSE PURPOSES ONLY.

	Limited cleaning routine.

	Module not written by VEFI team.

	
pysatNASA.instruments.cnofs_vefi.clean(self)

	Clean VEFI data to the specified level.

	
pysatNASA.instruments.cnofs_vefi.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

DE2 LANG

Module for the DE2 LANG instrument.

Supports the Langmuir Probe (LANG) instrument on Dynamics Explorer 2 (DE2).

From CDAWeb:

The Langmuir Probe Instrument (LANG) was a cylindrical electrostatic probe that
obtained measurements of electron temperature, Te, and electron or ion
concentration, Ne or Ni, respectively, and spacecraft potential. Data from
this investigation were used to provide temperature and density measurements
along magnetic field lines related to thermal energy and particle flows within
the magnetosphere-ionosphere system, to provide thermal plasma conditions for
wave-particle interactions, and to measure large-scale and fine-structure
ionospheric effects of energy deposition in the ionosphere. The Langmuir Probe
instrument was identical to that used on the AE satellites and the Pioneer
Venus Orbiter. Two independent sensors were connected to individual adaptive
sweep voltage circuits which continuously tracked the changing electron
temperature and spacecraft potential, while autoranging electrometers adjusted
their gain in response to the changing plasma density. The control signals used
to achieve this automatic tracking provided a continuous monitor of the
ionospheric parameters without telemetering each volt-ampere (V-I) curve.
Furthermore, internal data storage circuits permitted high resolution, high
data rate sampling of selected V-I curves for transmission to ground to verify
or correct the inflight processed data. Time resolution was 0.5 seconds.

References

J. P. Krehbiel, L. H. Brace, R. F. Theis, W. H. Pinkus, and R. B. Kaplan,
“The Dynamics Explorer 2 Langmuir Probe (LANG)”, Space Sci. Instrum., 5,
493-502, 1981.

Properties

	platform
	‘de2’

	name
	‘lang’

	inst_id
	None Supported

	tag
	None Supported

Warnings

	Currently no cleaning routine.

	
pysatNASA.instruments.de2_lang.clean(self)

	Clean DE2 LANG data to the specified level.

	
pysatNASA.instruments.de2_lang.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

DE2 NACS

The DE2 NACS instrument.

Supports the Neutral Atmosphere Composition Spectrometer (NACS) instrument
on Dynamics Explorer 2 (DE2).

From CDAWeb:

The Neutral Atmosphere Composition Spectrometer (NACS) was designed to obtain
in situ measurements of the neutral atmospheric composition and to study the
variations of the neutral atmosphere in response to energy coupled into it from
the magnetosphere. Because temperature enhancements, large-scale circulation
cells, and wave propagation are produced by energy input (each of which
posseses a specific signature in composition variation), the measurements
permitted the study of the partition, flow, and deposition of energy from the
magnetosphere. Specifically, the investigation objective was to characterize
the composition of the neutral atmosphere with particular emphasis on
variability in constituent densities driven by interactions in the atmosphere,
ionosphere, and magnetosphere system. The quadrupole mass spectrometer used was
nearly identical to those flown on the AE-C, -D, and -E missions. The electron-
impact ion source was used in a closed mode. Atmospheric particles entered an
antechamber through a knife-edged orifice, where they were thermalized to the
instrument temperature. The ions with the selected charge-to-mass ratios had
stable trajectories through the hyperbolic electric field, exited the analyzer,
and entered the detection system. An off-axis beryllium-copper dynode
multiplier operating at a gain of 2.E6 provided an output pulse of electrons
for each ion arrival. The detector output had a pulse rate proportional to the
neutral density in the ion source of the selected mass. The instrument also
included two baffles that scanned across the input orifice for optional
measurement of the zonal and vertical components of the neutral wind. The mass
select system provided for 256 mass values between 0 and 51 atomic mass units
(u) or each 0.2 u. It was possible to call any one of these mass numbers into
each of eight 0.016-s intervals. This sequence was repeated each 0.128 s.

This data set includes daily files of the PI-provided DE-2 NACS 1-second data
and corresponding orbit parameters. The data set was generated at NSSDC from
the original PI-provided data and software (SPTH-00010) and from the
orbit/attitude database and software that is part of the DE-2 UA data set
(SPIO-00174). The original NACS data were provided by the PI team in a highly
compressed VAX/VMS binary format on magnetic tapes. The data set covers the
whole DE-2 mission time period. Each data point is an average over the normally
8 measurements per second. Densities and relative errors are provided for
atomic oxygen (O), molecular nitrogen (N2), helium (He), atomic nitrogen (N),
and argon (Ar). The data quality is generally quite good below 500 km, but
deteriorates towards higher altitudes as oxygen and molecular nitrogen approach
their background values (which could only be determined from infrequent
spinning orbits) and the count rate for Ar becomes very low. The difference
between minimum (background) and maximum count rate for atomic nitrogen
(estimated from mass 30) was so small that results are generally poor. Data
were lost between 12 March 1982 and 31 March 1982 when the counter overflowed.

References

G. R. Carrignan, B. P. Block, J. C. Maurer, A. E. Hedin, C. A. Reber,
N. W. Spencer, “The neutral mass spectrometer on Dynamics Explorer B”,
Space Sci. Instrum., 5, 429-441, 1981.

Properties

	platform
	‘de2’

	name
	‘nacs’

	inst_id
	None Supported

	tag
	None Supported

Warnings

	Currently no cleaning routine.

	
pysatNASA.instruments.de2_nacs.clean(self)

	Clean DE2 NACS data to the specified level.

	
pysatNASA.instruments.de2_nacs.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

DE2 RPA

Module for the DE2 RPA instrument.

Supports the Retarding Potential Analyzer (RPA) instrument on Dynamics
Explorer 2 (DE2).

From CDAWeb:

The Retarding Potential Analyzer (RPA) measured the bulk ion velocity in the
direction of the spacecraft motion, the constituent ion concentrations, and the
ion temperature along the satellite path. These parameters were derived from a
least squares fit to the ion number flux vs energy curve obtained by sweeping
or stepping the voltage applied to the internal retarding grids of the RPA. In
addition, a separate wide aperture sensor, a duct sensor, was flown to measure
the spectral characteristics of iregularities in the total ion concentration.
The measured parameters obtained from this investigation were important to the
understanding of mechanisms that influence the plasma; i.e., to understand the
coupling between the solar wind and the earth’s atmosphere. The measurements
were made with a multigridded planar retarding potential analyzer very similar
in concept and geometry to the instruments carried on the AE satellites. The
retarding potential was variable in the range from approximately +32 to 0 V.
The details of this voltage trace, and whether it was continuous or stepped,
depended on the operating mode of the instrument. Specific parameters deduced
from these measurements were ion temperature; vehicle potential; ram component
of the ion drift velocity; the ion and electron concentration irregularity
spectrum; and the concentration of H+, He+, O+, and Fe+, and of molecular ions
near perigee.

It includes the DUCT portion of the high resolutiondata from the Dynamics
Explorer 2 (DE-2) Retarding Potential Analyzer (RPA) for the whole DE-2 mission
time period in ASCII format. This version was generated at NSSDC from the
PI-provided binary data (SPIO-00232). The DUCT files include RPA measurements
ofthe total ion concentration every 64 times per second. Due to a failure in
the instrument memory system RPA data are not available from 81317 06:26:40 UT
to 82057 13:16:00 UT. This data set is based on the revised version of the RPA
files that was submitted by the PI team in June of 1995. The revised RPA data
include a correction to the spacecraft potential.

References

W. B. Hanson, R. A. Heelis, R. A. Power, C. R. Lippincott, D. R. Zuccaro,
B. J. Holt, L. H. Harmon, and S. Sanatani, “The retarding potential analyzer
for dynamics explorer-B,” Space Sci. Instrum. 5, 503–510 (1981).

Properties

	platform
	‘de2’

	name
	‘rpa’

	inst_id
	None Supported

	tag
	None Supported

Warnings

	Currently no cleaning routine.

	
pysatNASA.instruments.de2_rpa.clean(self)

	Clean DE2 RPA data to the specified level.

	
pysatNASA.instruments.de2_rpa.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

DE2 WATS

Module for the DE2 WATS instrument.

Supports the Wind and Temperature Spectrometer (WATS) instrument on
Dynamics Explorer 2 (DE2).

From CDAWeb:

The Wind and Temperature Spectrometer (WATS) measured the in situ neutral
winds, the neutral particle temperatures, and the concentrations of selected
gases. The objective of this investigation was to study the interrelationships
among the winds, temperatures, plasma drift, electric fields, and other
properties of the thermosphere that were measured by this and other instruments
on the spacecraft. Knowledge of how these properties are interrelated
contributed to an understanding of the consequences of the acceleration of
neutral particles by the ions in the ionosphere, the acceleration of ions by
neutrals creating electric fields, and the related energy transfer between the
ionosphere and the magnetosphere. Three components of the wind, one normal to
the satellite velocity vector in the horizontal plane, one vertical, and one in
the satellite direction were measured. A retarding potential quadrupole mass
spectrometer, coupled to the atmosphere through a precisely orificed
antechamber, was used. It was operated in either of two modes: one employed the
retarding capability and the other used the ion source as a conventional
nonretarding source. Two scanning baffles were used in front of the mass
spectrometer: one moved vertically and the other moved horizontally. The
magnitudes of the horizontal and vertical components of the wind normal to the
spacecraft velocity vector were computed from measurements of the angular
relationship between the neutral particle stream and the sensor. The component
of the total stream velocity in the satellite direction was measured directly
by the spectrometer system through determination of the required retarding
potential. At altitudes too high for neutral species measurements, the planned
operation required the instrument to measure the thermal ion species only. A
series of four sequentially occurring slots –each a 2-s long measurement
interval– was adapted for the basic measurement format of the instrument.
Different functions were commanded into these slots in any combination, one per
measurement interval. Thus the time resolution can be 2, 4, 6, or 8 seconds.
Further details are found in This data set consists of the high-resolution data
of the Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) experiment.
The files contain the neutral density, temperature and horizontal (zonal) wind
velocity, and orbital parameters in ASCII format. The time resolution is
typically 2 seconds. Data are given as daily files (typically a few 100 Kbytes
each). PI-provided software (WATSCOR) was used to correct the binary data set.
NSSDC-developed software was used to add the orbit parameters, to convert the
binary into ASCII format and to combine the (PI-provided) orbital files into
daily files. For more on DE-2, WATS, and the binary data, see the
WATS_VOLDESC_SFDU_DE.DOC and WATS_FORMAT_SFDU_DE.DOC files. More information
about the processing done at NSSDC is given in WATS_NSSDC_PRO_DE.DOC.

References

N. W. Spencer, L. E. Wharton, H. B. Niemann, A. E. Hedin, G. R. Carrignan,
J. C. Maurer, “The Dynamics Explorer Wind and Temperature Spectrometer”,
Space Sci. Instrum., 5, 417-428, 1981.

Properties

	platform
	‘de2’

	name
	‘wats’

	inst_id
	None Supported

	tag
	None Supported

Warnings

	Currently no cleaning routine.

	
pysatNASA.instruments.de2_wats.clean(self)

	Clean DE2 LANG data to the specified level.

	
pysatNASA.instruments.de2_wats.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

FORMOSAT-1 IVM

Module for the ICON EUV instrument.

Supports the Ion Velocity Meter (IVM) onboard the Formosat-1 (formerly
ROCSAT-1) mission. Downloads data from the NASA Coordinated Data Analysis
Web (CDAWeb).

Properties

	platform
	‘formosat1’

	name
	‘ivm’

	tag
	None

	inst_id
	None supported

Warnings

	Currently no cleaning routine.

	
pysatNASA.instruments.formosat1_ivm.clean(self)

	Clean FORMOSAT-1 IVM data to the specified level.

	
pysatNASA.instruments.formosat1_ivm.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

ICON EUV

Module for the ICON EUV instrument.

Supports the Extreme Ultraviolet (EUV) imager onboard the Ionospheric
CONnection Explorer (ICON) satellite. Accesses local data in
netCDF format.

Properties

	platform
	‘icon’

	name
	‘euv’

	tag
	None supported

Warnings

	The cleaning parameters for the instrument are still under development.

	Only supports level-2 data.

Examples

import pysat
euv = pysat.Instrument(platform='icon', name='euv')
euv.download(dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 31))
euv.load(2020, 1)

By default, pysat removes the ICON level tags from variable names, ie,
ICON_L27_Ion_Density becomes Ion_Density. To retain the original names, use

euv = pysat.Instrument(platform='icon', name='euv',
 keep_original_names=True)

	
pysatNASA.instruments.icon_euv.clean(self)

	Clean ICON EUV data to the specified level.

	
pysatNASA.instruments.icon_euv.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

	Parameters

	
	instpysat.Instrument
	Instrument class object

	
pysatNASA.instruments.icon_euv.load(fnames, tag=None, inst_id=None, keep_original_names=False)

	Load ICON EUV data into xarray.Dataset object and pysat.Meta objects.

This routine is called as needed by pysat. It is not intended
for direct user interaction.

	Parameters

	
	fnamesarray-like
	Iterable of filename strings, full path, to data files to be loaded.
This input is nominally provided by pysat itself.

	tagstring
	Tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself. (default=None)

	inst_idstring
	Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself. (default=None)

	keep_original_namesboolean
	If True then the names as given in the netCDF ICON file
will be used as is. If False, a preamble is removed. (default=False)

	Returns

	
	dataxr.Dataset
	An xarray Dataset with data prepared for the pysat.Instrument

	metapysat.Meta
	Metadata formatted for a pysat.Instrument object.

Examples

inst = pysat.Instrument('icon', 'euv', tag='', inst_id='a')
inst.load(2020, 1)

	
pysatNASA.instruments.icon_euv.preprocess(self, keep_original_names=False)

	Adjust epoch timestamps to datetimes and remove variable preambles.

	Parameters

	
	keep_original_namesboolean
	if True then the names as given in the netCDF ICON file
will be used as is. If False, a preamble is removed. (default=False)

ICON FUV

Module for the ICON FUV instrument.

Supports the Far Ultraviolet (FUV) imager onboard the Ionospheric
CONnection Explorer (ICON) satellite. Accesses local data in
netCDF format.

Properties

	platform
	‘icon’

	name
	‘fuv’

	tag
	None supported

Warnings

	The cleaning parameters for the instrument are still under development.

	Only supports level-2 data.

Example

import pysat
fuv = pysat.Instrument(platform='icon', name='fuv', tag='day')
fuv.download(dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 31))
fuv.load(2020, 1)

By default, pysat removes the ICON level tags from variable names, ie,
ICON_L27_Ion_Density becomes Ion_Density. To retain the original names, use

fuv = pysat.Instrument(platform='icon', name='fuv', tag=day',
 keep_original_names=True)

	
pysatNASA.instruments.icon_fuv.clean(self)

	Clean ICON FUV data to the specified level.

	
pysatNASA.instruments.icon_fuv.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

	Parameters

	
	instpysat.Instrument
	Instrument class object

	
pysatNASA.instruments.icon_fuv.load(fnames, tag=None, inst_id=None, keep_original_names=False)

	Load ICON FUV data into xarray.Dataset object and pysat.Meta objects.

This routine is called as needed by pysat. It is not intended
for direct user interaction.

	Parameters

	
	fnamesarray-like
	iterable of filename strings, full path, to data files to be loaded.
This input is nominally provided by pysat itself.

	tagstring
	tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	inst_idstring
	Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	keep_original_namesboolean
	if True then the names as given in the netCDF ICON file
will be used as is. If False, a preamble is removed.

	Returns

	
	dataxr.Dataset
	An xarray Dataset with data prepared for the pysat.Instrument

	metapysat.Meta
	Metadata formatted for a pysat.Instrument object.

Examples

inst = pysat.Instrument('icon', 'fuv')
inst.load(2020, 1)

	
pysatNASA.instruments.icon_fuv.preprocess(self, keep_original_names=False)

	Adjust epoch timestamps to datetimes and remove variable preambles.

	Parameters

	
	keep_original_namesboolean
	if True then the names as given in the netCDF ICON file
will be used as is. If False, a preamble is removed. (default=False)

ICON IVM

Module for the ICON IVM instrument.

Supports the Ion Velocity Meter (IVM) onboard the Ionospheric Connections
(ICON) Explorer.

Properties

	platform
	‘icon’

	name
	‘ivm’

	tag
	None supported

	inst_id
	‘a’ or ‘b’

Example

import pysat
ivm = pysat.Instrument(platform='icon', name='ivm', inst_id='a')
ivm.download(dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 31))
ivm.load(2020, 1)

By default, pysat removes the ICON level tags from variable names, ie,
ICON_L27_Ion_Density becomes Ion_Density. To retain the original names, use

ivm = pysat.Instrument(platform='icon', name='ivm', inst_id='a',
 keep_original_names=True)

Author

	
	Stoneback

	
pysatNASA.instruments.icon_ivm.clean(self)

	Clean ICON IVM data to the specified level.

	
pysatNASA.instruments.icon_ivm.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

	Parameters

	
	instpysat.Instrument
	Instrument class object

	
pysatNASA.instruments.icon_ivm.load(fnames, tag=None, inst_id=None, keep_original_names=False)

	Load ICON IVM data into pandas.DataFrame and pysat.Meta objects.

This routine is called as needed by pysat. It is not intended
for direct user interaction.

	Parameters

	
	fnamesarray-like
	iterable of filename strings, full path, to data files to be loaded.
This input is nominally provided by pysat itself.

	tagstring
	tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	inst_idstring
	Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	keep_original_namesboolean
	if True then the names as given in the netCDF ICON file
will be used as is. If False, a preamble is removed.

	Returns

	
	datapds.DataFrame
	A pandas DataFrame with data prepared for the pysat.Instrument

	metapysat.Meta
	Metadata formatted for a pysat.Instrument object.

Examples

inst = pysat.Instrument('icon', 'ivm', inst_id='a', tag='')
inst.load(2020, 1)

	
pysatNASA.instruments.icon_ivm.preprocess(self, keep_original_names=False)

	Remove variable preambles.

	Parameters

	
	keep_original_namesboolean
	if True then the names as given in the netCDF ICON file
will be used as is. If False, a preamble is removed. (default=False)

ICON MIGHTI

Module for the ICON MIGHTI instrument.

Supports the Michelson Interferometer for Global High-resolution
Thermospheric Imaging (MIGHTI) instrument onboard the Ionospheric
CONnection Explorer (ICON) satellite. Accesses local data in
netCDF format.

Properties

	platform
	‘icon’

	name
	‘mighti’

	tag
	Supports ‘los_wind_green’, ‘los_wind_red’, ‘vector_wind_green’,
‘vector_wind_red’, ‘temperature’. Note that not every data product
available for every inst_id

	inst_id
	‘vector’, ‘a’, or ‘b’

Warnings

	The cleaning parameters for the instrument are still under development.

	Only supports level-2 data.

Example

import pysat
mighti = pysat.Instrument('icon', 'mighti', tag='vector_wind_green',
 inst_id='vector', clean_level='clean')
mighti.download(dt.datetime(2020, 1, 30), dt.datetime(2020, 1, 31))
mighti.load(2020, 2)

By default, pysat removes the ICON level tags from variable names, ie,
ICON_L27_Ion_Density becomes Ion_Density. To retain the original names, use

mighti = pysat.Instrument(platform='icon', name='mighti',
 tag='vector_wind_green', inst_id='vector',
 clean_level='clean',
 keep_original_names=True)

Note

Currently red and green data products are bundled together in zip files on the
server. This results in ‘double downloading’. This will be fixed once data is
transfered to SPDF.

	
pysatNASA.instruments.icon_mighti.clean(self)

	Clean ICON MIGHTI data to the specified level.

	
pysatNASA.instruments.icon_mighti.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

	Parameters

	
	instpysat.Instrument
	Instrument class object

	
pysatNASA.instruments.icon_mighti.load(fnames, tag=None, inst_id=None, keep_original_names=False)

	Load ICON MIGHTI data into xarray.Dataset and pysat.Meta objects.

This routine is called as needed by pysat. It is not intended
for direct user interaction.

	Parameters

	
	fnamesarray-like
	iterable of filename strings, full path, to data files to be loaded.
This input is nominally provided by pysat itself.

	tagstring
	tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	inst_idstring
	Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	keep_original_namesboolean
	if True then the names as given in the netCDF ICON file
will be used as is. If False, a preamble is removed.

	Returns

	
	dataxr.Dataset
	An xarray Dataset with data prepared for the pysat.Instrument

	metapysat.Meta
	Metadata formatted for a pysat.Instrument object.

Examples

inst = pysat.Instrument('icon', 'fuv')
inst.load(2020, 1)

	
pysatNASA.instruments.icon_mighti.preprocess(self, keep_original_names=False)

	Adjust epoch timestamps to datetimes and remove variable preambles.

	Parameters

	
	keep_original_namesboolean
	if True then the names as given in the netCDF ICON file
will be used as is. If False, a preamble is removed. (default=False)

ISS FPMU

Module for the ISS FPMU instrument.

Supports the Floating Potential Measurement Unit
(FPMU) instrument onboard the International Space
Station (ISS). Downloads data from the NASA
Coordinated Data Analysis Web (CDAWeb).

Properties

	platform
	‘iss’

	name
	‘fpmu’

	tag
	None Supported

	inst_id
	None supported

Warnings

	Currently clean only replaces fill values with Nans.

	Module not written by FPMU team.

	
pysatNASA.instruments.iss_fpmu.clean(self)

	Clean ISS FPMU data to the specified level.

	
pysatNASA.instruments.iss_fpmu.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

OMNI HRO

Module for the OMNI HRO instrument.

Supports OMNI Combined, Definitive, IMF and Plasma Data, and Energetic
Proton Fluxes, Time-Shifted to the Nose of the Earth’s Bow Shock, plus Solar
and Magnetic Indices. Downloads data from the NASA Coordinated Data Analysis
Web (CDAWeb). Supports both 5 and 1 minute files.

Properties

	platform
	‘omni’

	name
	‘hro’

	tag
	Select time between samples, one of {‘1min’, ‘5min’}

	inst_id
	None supported

Note

Files are stored by the first day of each month. When downloading use
omni.download(start, stop, freq=’MS’) to only download days that could possibly
have data. ‘MS’ gives a monthly start frequency.

This material is based upon work supported by the
National Science Foundation under Grant Number 1259508.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

Warnings

	Currently no cleaning routine. Though the CDAWEB description indicates that
these level-2 products are expected to be ok.

	Module not written by OMNI team.

Custom Functions

	time_shift_to_magnetic_poles
	Shift time from bowshock to intersection with one of the magnetic poles

	calculate_clock_angle
	Calculate the clock angle and IMF mag in the YZ plane

	calculate_imf_steadiness
	Calculate the IMF steadiness using clock angle and magnitude in the YZ plane

	calculate_dayside_reconnection
	Calculate the dayside reconnection rate

	
pysatNASA.instruments.omni_hro.calculate_clock_angle(inst)

	Calculate IMF clock angle and magnitude of IMF in GSM Y-Z plane.

	Parameters

	
	instpysat.Instrument
	Instrument with OMNI HRO data

	
pysatNASA.instruments.omni_hro.calculate_imf_steadiness(inst, steady_window=15, min_window_frac=0.75, max_clock_angle_std=28.64788975654116, max_bmag_cv=0.5)

	Calculate IMF steadiness and add parameters to instrument data.

	Parameters

	
	instpysat.Instrument
	Instrument with OMNI HRO data

	steady_windowint
	Window for calculating running statistical moments in min (default=15)

	min_window_fracfloat
	Minimum fraction of points in a window for steadiness to be calculated
(default=0.75)

	max_clock_angle_stdfloat
	Maximum standard deviation of the clock angle in degrees (default=22.5)

	max_bmag_cvfloat
	Maximum coefficient of variation of the IMF magnitude in the GSM
Y-Z plane (default=0.5)

	
pysatNASA.instruments.omni_hro.time_shift_to_magnetic_poles(inst)

	Shift OMNI times to intersection with the magnetic pole.

	Parameters

	
	instInstrument class object
	Instrument with OMNI HRO data

Warning

Use at own risk.

SES14 GOLD

Module for the SES14 GOLD instrument.

Supports the Nmax data product from the Global Observations of the Limb and
Disk (GOLD) satellite. Accesses data in netCDF format.

Properties

	platform
	‘ses14’

	name
	‘gold’

	tag
	‘nmax’

Warnings

	The cleaning parameters for the instrument are still under development.

	strict_time_flag must be set to False

Examples

import datetime as dt
import pysat
nmax = pysat.Instrument(platform='ses14', name='gold', tag='nmax'
 strict_time_flag=False)
nmax.download(dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 31))
nmax.load(2020, 1)

	
pysatNASA.instruments.ses14_gold.clean(self)

	Clean SES14 GOLD data to the specified level.

Routine is called by pysat, and not by the end user directly.

	Parameters

	
	selfpysat.Instrument
	Instrument class object, whose attribute clean_level is used to return
the desired level of data selectivity.

	
pysatNASA.instruments.ses14_gold.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

	Parameters

	
	selfpysat.Instrument
	Instrument class object

	
pysatNASA.instruments.ses14_gold.load(fnames, tag=None, inst_id=None)

	Load GOLD NMAX data into xarray.Dataset and pysat.Meta objects.

This routine is called as needed by pysat. It is not intended
for direct user interaction.

	Parameters

	
	fnamesarray-like
	iterable of filename strings, full path, to data files to be loaded.
This input is nominally provided by pysat itself.

	tagstring
	tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	inst_idstring
	Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	**kwargsextra keywords
	Passthrough for additional keyword arguments specified when
instantiating an Instrument object. These additional keywords
are passed through to this routine by pysat.

	Returns

	
	dataxr.Dataset
	An xarray Dataset with data prepared for the pysat.Instrument

	metapysat.Meta
	Metadata formatted for a pysat.Instrument object.

Examples

inst = pysat.Instrument('gold', 'nmax')
inst.load(2019, 1)

TIMED SABER

The TIMED SABER instrument.

Supports the Sounding of the Atmosphere using Broadband Emission Radiometry
(SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics
Dynamics (TIMED) satellite.

Properties

	platformstring
	‘timed’

	namestring
	‘saber’

	tagstring
	None supported

	inst_idstring
	None supported

Note

SABER “Rules of the Road” for DATA USE
Users of SABER data are asked to respect the following guidelines

	Mission scientific and model results are open to all.

	Guest investigators, and other members of the scientific community or
general public should contact the PI or designated team member early in an
analysis project to discuss the appropriate use of the data.

	Users that wish to publish the results derived from SABER data should
normally offer co-authorship to the PI, Associate PI or designated team
members. Co-authorship may be declined. Appropriate acknowledgement of
institutions, personnel, and funding agencies should be given.

	Users should heed the caveats of SABER team members as to the
interpretation and limitations of the data. SABER team members may insist
that such caveats be published, even if co-authorship is declined. Data
and model version numbers should also be specified.

	Pre-prints of publications and conference abstracts should be widely
distributed to interested parties within the mission and related projects.

Warnings

	Note on Temperature Errors: http://saber.gats-inc.com/temp_errors.php

	No cleaning routine

	
pysatNASA.instruments.timed_saber.clean(self)

	Clean TIMED SABER data to the specified level.

	
pysatNASA.instruments.timed_saber.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

TIMED SEE

Supports the SEE instrument on TIMED.

Downloads data from the NASA Coordinated Data
Analysis Web (CDAWeb).

Supports two options for loading that may be
specified at instantiation.

Properties

	platform
	‘timed’

	name
	‘see’

	tag
	None

	inst_id
	None supported

	flatten_twod
	If True, then two dimensional data is flattened across
columns. Name mangling is used to group data, first column
is ‘name’, last column is ‘name_end’. In between numbers are
appended ‘name_1’, ‘name_2’, etc. All data for a given 2D array
may be accessed via, data.loc[:, ‘item’:’item_end’]
If False, then 2D data is stored as a series of DataFrames,
indexed by Epoch. data.loc[0, ‘item’]
(default=True)

Note

	no tag required

Warnings

	Currently no cleaning routine.

	
pysatNASA.instruments.timed_see.clean(self)

	Clean TIMED SEE data to the specified level.

	
pysatNASA.instruments.timed_see.init(self)

	Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

Supported Constellations

DE2

The Dynamics Explorer 2 spacecraft. Includes the instruments

	DE2 LANG

	DE2 NACS

	DE2 RPA

	DE2 WATS

ICON

The Ionosphere CONnection explorer spacecraft. Includes the instruments

	ICON EUV

	ICON FUV

	ICON IVM

	ICON MIGHTI

Examples

Here are some examples that demonstrate how to use various pysatNASA
tools

	Loading ICON IVM data

Loading ICON IVM data

pysatNASA uses pysat [https://github.com/pysat/pysat] to load
space science instrument data. As specified in the
pysat tutorial [https://pysat.readthedocs.io/en/latest/tutorial.html],
data may be loaded using the following commands. Data from the Ion Velocity
Meter on board the Ionospheric CONnection Explorer (ICON) [https://www.nasa.gov/icon] is used as an example.

import datetime as dt
import pysat
import pysatNASA as py_nasa

pysat.utils.registry.register_by_module(py_nasa.instruments)

old_time = dt.datetime(2020, 1, 1)
ivm = pysat.Instrument(platform='icon', name='ivm',
 inst_id='a', update_files=True)
ivm.download(start=old_time)
ivm.load(date=old_time)
print(ivm)

The output shows some basic info about the instrument object, as well as
information about the data loaded.

pysat Instrument object

Platform: 'icon'
Name: 'ivm'
Tag: ''
Instrument id: 'a'

Data Processing

Cleaning Level: 'clean'
Data Padding: None
Keyword Arguments Passed to list_files: {}
Keyword Arguments Passed to load: {}
Keyword Arguments Passed to preprocess: {}
Keyword Arguments Passed to download: {}
Keyword Arguments Passed to list_remote_files: {}
Keyword Arguments Passed to clean: {}
Keyword Arguments Passed to init: {}
Custom Functions: 0 applied

Local File Statistics

Number of files: 402
Date Range: 22 October 2019 --- 29 December 2020

Loaded Data Statistics

Date: 01 January 2020
DOY: 001
Time range: 31 December 2019 23:59:57 --- 01 January 2020 23:59:55
Number of Times: 86400
Number of variables: 91

Variable Names:
A_Activity A_Status Altitude
 ...
Unit_Vector_Zonal_X Unit_Vector_Zonal_Y Unit_Vector_Zonal_Z

pysat Meta object

Tracking 21 metadata values
Metadata for 92 standard variables
Metadata for 0 ND variables

Guide for Developers

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

	Contributing
	Short version

	Bug reports

	Feature requests and feedback

	Development

	Pull Request Guidelines

	Project Style Guidelines

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at pysat.developers@gmail.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://contributor-covenant.org], version 1.4, available at https://contributor-covenant.org/version/1/4 [https://contributor-covenant.org/version/1/4/]

Contributing

Bug reports, feature suggestions, and other contributions are greatly
appreciated! pysat is a community-driven project and welcomes both feedback and
contributions.

Come join us on Slack! An invitation to the pysat workspace is available
in the ‘About’ section of the
pysat GitHub Repository. [https://github.com/pysat/pysat] Development meetings
are generally held fortnightly.

Short version

	Submit bug reports and feature requests at GitHub [https://github.com/pysat/pysatNASA/issues]

	Make pull requests to the develop branch

Bug reports

When reporting a bug [https://github.com/pysat/pysatNASA/issues] please
include:

	Your operating system name and version

	Any details about your local setup that might be helpful in troubleshooting

	Detailed steps to reproduce the bug

Feature requests and feedback

The best way to send feedback is to file an issue at
GitHub [https://github.com/pysat/pysatNASA/issues].

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions
are welcome :)

Development

To set up pysatNASA for local development:

	Fork pysatNASA on GitHub [https://github.com/pysat/pysatNASA/fork].

	Clone your fork locally:

git clone git@github.com:your_name_here/pysatNASA.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

Tests for new instruments are performed automatically. See discussion
here [https://pysat.readthedocs.io/en/main/new_instrument.html#testing-support]
for more information on triggering these standard tests.

Tests for custom functions should be added to the appropriately named file
in pysatNASA/tests. For example, custom functions for the OMNI HRO data
are tested in pysatNASA/tests/test_omni_hro.py. If no test file exists,
then you should create one. This testing uses pytest, which will run tests
on any python file in the test directory that starts with test. Classes
must begin with Test, and methods must begin with test as well.

	When you’re done making changes, run all the checks to ensure that nothing
is broken on your local system, as well as check for flake8 compliance:

pytest -vs --flake8 pysatNASA

	Update/add documentation (in docs), if relevant

	Add your name to the .zenodo.json file as an author

	Commit your changes:

git add .
git commit -m "AAA: Brief description of your changes"

Where AAA is a standard shorthand for the type of change (eg, BUG or DOC).
pysat follows the numpy development workflow [https://numpy.org/doc/stable/dev/development_workflow.html],
see the discussion there for a full list of this shorthand notation.

	Once you are happy with the local changes, push to Github:

git push origin name-of-your-bugfix-or-feature

Note that each push will trigger the Continuous Integration workflow.

	Submit a pull request through the GitHub website. Pull requests should be
made to the develop branch.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code, just
make a pull request. Pull requests should be made to the develop branch.

For merging, you should:

	Include an example for use

	Add a note to CHANGELOG.md about the changes

	Update the author list in zenodo.json if applicable

	Ensure that all checks passed (current checks include Github Actions and Coveralls)

If you don’t have all the necessary Python versions available locally or
have trouble building all the testing environments, you can rely on
GitHub Actions to run the tests for each change you add in the pull
request. Because testing here will delay tests by other developers,
please ensure that the code passes all tests on your local system first.

Project Style Guidelines

In general, pysat follows PEP8 and numpydoc guidelines. Pytest runs the unit
and integration tests, flake8 checks for style, and sphinx-build performs
documentation tests. However, there are certain additional style elements that
have been adopted to ensure the project maintains a consistent coding style.
These include:

	Line breaks should occur before a binary operator (ignoring flake8 W503)

	Combine long strings using join

	Preferably break long lines on open parentheses rather than using \

	Use no more than 80 characters per line

	Avoid using Instrument class key attribute names as unrelated variable names:
platform, name, tag, and inst_id

	The pysat logger is imported into each sub-module and provides status updates
at the info and warning levels (as appropriate)

	Several dependent packages have common nicknames, including:

	import datetime as dt

	import numpy as np

	import pandas as pds

	import xarray as xr

	When incrementing a timestamp, use dt.timedelta instead of pds.DateOffset
when possible to reduce program runtime

	All classes should have __repr__ and __str__ functions

	Docstrings use Note instead of Notes

	Try to avoid creating a try/except statement where except passes

	Use setup and teardown in test classes

	Use pytest parametrize in test classes when appropriate

	Provide testing class methods with informative failure statements and
descriptive, one-line docstrings

	Block and inline comments should use proper English grammar and punctuation
with the exception of single sentences in a block, which may then omit the
final period

Migration from pysat 2

With the release of pysat 3.0.0, the pysat project now keeps instrument modules
within distinct packages. Each of these packages acts as an interface between
the core pysat package and a unique data provider. pysatNASA fills this role
for the Space Physics Data Facility [https://spdf.gsfc.nasa.gov/] at NASA.

Registering the pysatNASA library

While each module can be loaded separately, users may find it easier
to register all instruments.

import pysat
import pysatNASA
pysat.utils.registry.register_by_module(pysatNASA.instruments)

This creates a shortcut so that instruments may be loaded using only
platform and name without having to load the instrument package each
time.

import pysat
ivm = pysat.Instrument('cnofs', 'ivm')

Modifying the directory structure

The internal directory structure has been updated in pysat 3.0.0 to include
a separate layer for inst_id. Users who have already downloaded data in
a previous version should follow this tutorial [https://pysat.readthedocs.io/en/latest/tutorial/tutorial_v3_upgrade.html]
to make their local data directories compatible with the new version.

A Note about ICON data

Starting with pysatNASA 0.0.2, the data for the Ionospheric CONnection Explorer
(ICON) is now accessed from the SPDF server directly rather than the University
of California at Berkeley server. There is a slight update in the file names at
the new location, which is not compatible with the previous versions of pysat.
It is recommended that users download this data using the new software.

Change Log

All notable changes to this project will be documented in this file.
This project adheres to Semantic Versioning [https://semver.org/].

[0.0.3] - 2022-05-18

	Include flake8 linting of docstrings and style in Github Actions

	Include Windows tests in Github Actions

	Bug Fixes

	Expanded cleaning of ICON IVM ion drifts to more variables

	Fixed a bug in loading ICON IVM data (added multi_file_day = True)

	Fixed a bug where OMNI meta data float values are loaded as arrays

	Maintenance

	Removed dummy vars after importing instruments and constellations

	Updated NEP29 compliance in Github Actions

	Limit versions of hacking for improved pip compliance

	Update instrument template standards

	Updated documentation style

	Removed cap on cdflib

[0.0.2] - 2021-06-07

	Updated Instruments and routines to conform with changes made for pysat 3.0

	Added documentation

	Instrument Changes

	Preliminary support added for SES-14 GOLD Nmax

	Updated cleaning routines for C/NOFS IVM data

	Migrated remote server for ICON instruments to SPDF from UCB

	Renamed ROCSAT1 IVM as FORMOSAT1 IVM

	Dropped support for SPORT IVM (unlaunched, moved to pysatIncubator)

	Implements GitHub Actions as primary CI test environment

	Improved PEP8 compliance

	Replaced pysatCDF with cdflib support

	Bug Fixes

	remote_file_list error if start/stop dates unspecified

	Improved download robustness

[0.0.1] - 2020-08-13

	Initial port of existing routines from pysat

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pysatNASA	

 	
 	
 pysatNASA.instruments.cnofs_ivm	

 	
 	
 pysatNASA.instruments.cnofs_plp	

 	
 	
 pysatNASA.instruments.cnofs_vefi	

 	
 	
 pysatNASA.instruments.de2_lang	

 	
 	
 pysatNASA.instruments.de2_nacs	

 	
 	
 pysatNASA.instruments.de2_rpa	

 	
 	
 pysatNASA.instruments.de2_wats	

 	
 	
 pysatNASA.instruments.formosat1_ivm	

 	
 	
 pysatNASA.instruments.icon_euv	

 	
 	
 pysatNASA.instruments.icon_fuv	

 	
 	
 pysatNASA.instruments.icon_ivm	

 	
 	
 pysatNASA.instruments.icon_mighti	

 	
 	
 pysatNASA.instruments.iss_fpmu	

 	
 	
 pysatNASA.instruments.omni_hro	

 	
 	
 pysatNASA.instruments.ses14_gold	

 	
 	
 pysatNASA.instruments.timed_saber	

 	
 	
 pysatNASA.instruments.timed_see	

Index

 C
 | I
 | L
 | M
 | P
 | T

C

 	
 	calculate_clock_angle() (in module pysatNASA.instruments.omni_hro)

 	calculate_imf_steadiness() (in module pysatNASA.instruments.omni_hro)

 	clean() (in module pysatNASA.instruments.cnofs_ivm)

 	(in module pysatNASA.instruments.cnofs_plp)

 	(in module pysatNASA.instruments.cnofs_vefi)

 	(in module pysatNASA.instruments.de2_lang)

 	(in module pysatNASA.instruments.de2_nacs)

 	(in module pysatNASA.instruments.de2_rpa)

 	(in module pysatNASA.instruments.de2_wats)

 	(in module pysatNASA.instruments.formosat1_ivm)

 	(in module pysatNASA.instruments.icon_euv)

 	(in module pysatNASA.instruments.icon_fuv)

 	(in module pysatNASA.instruments.icon_ivm)

 	(in module pysatNASA.instruments.icon_mighti)

 	(in module pysatNASA.instruments.iss_fpmu)

 	(in module pysatNASA.instruments.ses14_gold)

 	(in module pysatNASA.instruments.timed_saber)

 	(in module pysatNASA.instruments.timed_see)

I

 	
 	init() (in module pysatNASA.instruments.cnofs_ivm)

 	(in module pysatNASA.instruments.cnofs_plp)

 	(in module pysatNASA.instruments.cnofs_vefi)

 	(in module pysatNASA.instruments.de2_lang)

 	(in module pysatNASA.instruments.de2_nacs)

 	(in module pysatNASA.instruments.de2_rpa)

 	(in module pysatNASA.instruments.de2_wats)

 	(in module pysatNASA.instruments.formosat1_ivm)

 	(in module pysatNASA.instruments.icon_euv)

 	(in module pysatNASA.instruments.icon_fuv)

 	(in module pysatNASA.instruments.icon_ivm)

 	(in module pysatNASA.instruments.icon_mighti)

 	(in module pysatNASA.instruments.iss_fpmu)

 	(in module pysatNASA.instruments.ses14_gold)

 	(in module pysatNASA.instruments.timed_saber)

 	(in module pysatNASA.instruments.timed_see)

L

 	
 	load() (in module pysatNASA.instruments.icon_euv)

 	(in module pysatNASA.instruments.icon_fuv)

 	(in module pysatNASA.instruments.icon_ivm)

 	(in module pysatNASA.instruments.icon_mighti)

 	(in module pysatNASA.instruments.ses14_gold)

M

 	
 	
 module

 	pysatNASA.instruments.cnofs_ivm

 	pysatNASA.instruments.cnofs_plp

 	pysatNASA.instruments.cnofs_vefi

 	pysatNASA.instruments.de2_lang

 	pysatNASA.instruments.de2_nacs

 	pysatNASA.instruments.de2_rpa

 	pysatNASA.instruments.de2_wats

 	pysatNASA.instruments.formosat1_ivm

 	pysatNASA.instruments.icon_euv

 	pysatNASA.instruments.icon_fuv

 	pysatNASA.instruments.icon_ivm

 	pysatNASA.instruments.icon_mighti

 	pysatNASA.instruments.iss_fpmu

 	pysatNASA.instruments.omni_hro

 	pysatNASA.instruments.ses14_gold

 	pysatNASA.instruments.timed_saber

 	pysatNASA.instruments.timed_see

P

 	
 	preprocess() (in module pysatNASA.instruments.cnofs_ivm)

 	(in module pysatNASA.instruments.icon_euv)

 	(in module pysatNASA.instruments.icon_fuv)

 	(in module pysatNASA.instruments.icon_ivm)

 	(in module pysatNASA.instruments.icon_mighti)

 	
 pysatNASA.instruments.cnofs_ivm

 	module

 	
 pysatNASA.instruments.cnofs_plp

 	module

 	
 pysatNASA.instruments.cnofs_vefi

 	module

 	
 pysatNASA.instruments.de2_lang

 	module

 	
 pysatNASA.instruments.de2_nacs

 	module

 	
 pysatNASA.instruments.de2_rpa

 	module

 	
 pysatNASA.instruments.de2_wats

 	module

 	
 	
 pysatNASA.instruments.formosat1_ivm

 	module

 	
 pysatNASA.instruments.icon_euv

 	module

 	
 pysatNASA.instruments.icon_fuv

 	module

 	
 pysatNASA.instruments.icon_ivm

 	module

 	
 pysatNASA.instruments.icon_mighti

 	module

 	
 pysatNASA.instruments.iss_fpmu

 	module

 	
 pysatNASA.instruments.omni_hro

 	module

 	
 pysatNASA.instruments.ses14_gold

 	module

 	
 pysatNASA.instruments.timed_saber

 	module

 	
 pysatNASA.instruments.timed_see

 	module

T

 	
 	time_shift_to_magnetic_poles() (in module pysatNASA.instruments.omni_hro)

 _images/poweredbypysat.png

_images/pysatnasa_logo.jpg

_static/file.png

_static/minus.png

_static/plus.png

_static/pysatnasa_logo.jpg

nav.xhtml

 Table of Contents

 		
 Welcome to the pysatNASA documentation

 		
 Overview

 		
 Installation

 		
 Prerequisites

 		
 Installation Options

 		
 Post Installation

 		
 Citation Guidelines

 		
 pysatNASA

 		
 Supported Instruments

 		
 C/NOFS IVM

 		
 References

 		
 Properties

 		
 Warnings

 		
 C/NOFS PLP

 		
 References

 		
 Properties

 		
 Warnings

 		
 C/NOFS VEFI

 		
 References

 		
 Properties

 		
 Note

 		
 Warnings

 		
 DE2 LANG

 		
 References

 		
 Properties

 		
 Warnings

 		
 DE2 NACS

 		
 References

 		
 Properties

 		
 Warnings

 		
 DE2 RPA

 		
 References

 		
 Properties

 		
 Warnings

 		
 DE2 WATS

 		
 References

 		
 Properties

 		
 Warnings

 		
 FORMOSAT-1 IVM

 		
 Properties

 		
 Warnings

 		
 ICON EUV

 		
 Properties

 		
 Warnings

 		
 Examples

 		
 ICON FUV

 		
 Properties

 		
 Warnings

 		
 Example

 		
 ICON IVM

 		
 Properties

 		
 Example

 		
 Author

 		
 ICON MIGHTI

 		
 Properties

 		
 Warnings

 		
 Example

 		
 Note

 		
 ISS FPMU

 		
 Properties

 		
 Warnings

 		
 OMNI HRO

 		
 Properties

 		
 Note

 		
 Warnings

 		
 Custom Functions

 		
 SES14 GOLD

 		
 Properties

 		
 Warnings

 		
 Examples

 		
 TIMED SABER

 		
 Properties

 		
 Note

 		
 Warnings

 		
 TIMED SEE

 		
 Properties

 		
 Note

 		
 Warnings

 		
 Supported Constellations

 		
 DE2

 		
 ICON

 		
 Examples

 		
 Loading ICON IVM data

 		
 Guide for Developers

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 Contributing

 		
 Short version

 		
 Bug reports

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Project Style Guidelines

 		
 Migration from pysat 2

 		
 Registering the pysatNASA library

 		
 Modifying the directory structure

 		
 A Note about ICON data

 		
 Change Log

 		
 [0.0.3] - 2022-05-18

 		
 [0.0.2] - 2021-06-07

 		
 [0.0.1] - 2020-08-13

