
pysatNASA Documentation
Release 0.0.3-alpha

Klenzing, Jeff, Stoneback, Russell, Burrell, Angeline G., Smith, Jonathon, Pembroke, Asher, Spence, Carey

May 18, 2022

CONTENTS

1 Overview 3

2 Installation 5
2.1 Prerequisites . 5
2.2 Installation Options . 5
2.3 Post Installation . 6

3 Citation Guidelines 7
3.1 pysatNASA . 7

4 Supported Instruments 9
4.1 C/NOFS IVM . 9
4.2 C/NOFS PLP . 10
4.3 C/NOFS VEFI . 11
4.4 DE2 LANG . 12
4.5 DE2 NACS . 13
4.6 DE2 RPA . 14
4.7 DE2 WATS . 16
4.8 FORMOSAT-1 IVM . 17
4.9 ICON EUV . 17
4.10 ICON FUV . 19
4.11 ICON IVM . 21
4.12 ICON MIGHTI . 22
4.13 ISS FPMU . 24
4.14 OMNI HRO . 24
4.15 SES14 GOLD . 26
4.16 TIMED SABER . 27
4.17 TIMED SEE . 28

5 Supported Constellations 31
5.1 DE2 . 31
5.2 ICON . 31

6 Examples 33
6.1 Loading ICON IVM data . 33

7 Guide for Developers 35
7.1 Contributor Covenant Code of Conduct . 35
7.2 Contributing . 36

8 Migration from pysat 2 41

i

8.1 Registering the pysatNASA library . 41
8.2 Modifying the directory structure . 41
8.3 A Note about ICON data . 41

9 Change Log 43
9.1 [0.0.3] - 2022-05-18 . 43
9.2 [0.0.2] - 2021-06-07 . 43
9.3 [0.0.1] - 2020-08-13 . 44

10 Indices and tables 45

Python Module Index 47

Index 49

ii

pysatNASA Documentation, Release 0.0.3-alpha

This documentation describes the pysatNASA module, which contains routines to NASA space science data as
pysat.Instrument objects through the CDAWeb interface.

CONTENTS 1

pysatNASA Documentation, Release 0.0.3-alpha

2 CONTENTS

CHAPTER

ONE

OVERVIEW

This is a library of pysat instrument modules and methods designed to support NASA instruments and missions
archived at the Community Data Analysis Web portal.

3

pysatNASA Documentation, Release 0.0.3-alpha

4 Chapter 1. Overview

CHAPTER

TWO

INSTALLATION

The following instructions will allow you to install pysatNASA.

2.1 Prerequisites

pysatNASA uses common Python modules, as well as modules developed by and for the Space Physics community.
This module officially supports Python 3.7+ and pysat 3.0.0+.

Common modules Community modules
beautifulsoup4 cdflib>=0.4.4
lxml pysat>=3.0.0
netCDF4
numpy
pandas
requests
xarray

2.2 Installation Options

1. Clone the git repository

git clone https://github.com/pysat/pysatNASA.git

2. Install pysatNASA: Change directories into the repository folder and run the setup.py file. There are a few ways
you can do this:

A. Install on the system (root privileges required):

sudo python setup.py install

B. Install at the user level:

5

pysatNASA Documentation, Release 0.0.3-alpha

python setup.py install --user

C. Install with the intent to develop locally:

python setup.py develop --user

2.3 Post Installation

After installation, you may register the pysatNASA Instrument sub-modules with pysat. If this is your first time using
pysat, check out the quickstart guide for pysat. Once pysat is set up, you may choose to register the the pysatNASA
Instruments sub-modules by:

import pysat
import pysatNASA

pysat.utils.registry.register_by_module(pysatNASA.instruments)

You may then use the pysat platform and name keywords to initialize the model Instrument instead of the
inst_module keyword argument.

6 Chapter 2. Installation

https://pysat.readthedocs.io/en/latest/quickstart.html

CHAPTER

THREE

CITATION GUIDELINES

When publishing work that uses pysatNASA, please cite the package and any package it depends on that plays an
important role in your analysis. Specifying which version of pysatNASA used will also improve the reproducibility of
your presented results.

3.1 pysatNASA

The most recent citation can be found at Zenodo. The examples here are from the first release.

• Klenzing, J., et al. (2020). pysat/pysatNASA: Initial Release (Version 0.0.1). Zenodo.
doi:10.5281/zenodo.3986132

@software{pysatNASA,
author = {Klenzing, J. and

Stoneback, R.A. and
Burrell, A.G. and
Pembroke, A. and
Depew, M. and
Spence, C.},

title = {pysat/pysatNASA: Initial Release},
month = aug,
year = 2020,
publisher = {Zenodo},
version = {v0.0.1},
doi = {10.5281/zenodo.3986132},
url = {https://doi.org/10.5281/zenodo.3986132}

}

7

https://zenodo.org/record/3986131

pysatNASA Documentation, Release 0.0.3-alpha

8 Chapter 3. Citation Guidelines

CHAPTER

FOUR

SUPPORTED INSTRUMENTS

4.1 C/NOFS IVM

Module for the C/NOFS IVM instrument.

Supports the Ion Velocity Meter (IVM) onboard the Communication and Navigation Outage Forecasting System
(C/NOFS) satellite, part of the Coupled Ion Netural Dynamics Investigation (CINDI). Downloads data from the NASA
Coordinated Data Analysis Web (CDAWeb) in CDF format.

The IVM is composed of the Retarding Potential Analyzer (RPA) and Drift Meter (DM). The RPA measures the energy
of plasma along the direction of satellite motion. By fitting these measurements to a theoretical description of plasma
the number density, plasma composition, plasma temperature, and plasma motion may be determined. The DM directly
measures the arrival angle of plasma. Using the reported motion of the satellite the angle is converted into ion motion
along two orthogonal directions, perpendicular to the satellite track.

4.1.1 References

A brief discussion of the C/NOFS mission and instruments can be found at de La Beaujardière, O., et
al. (2004), C/NOFS: A mission to forecast scintillations, J. Atmos. Sol. Terr. Phys., 66, 1573–1591,
doi:10.1016/j.jastp.2004.07.030.

Discussion of cleaning parameters for ion drifts can be found in: Burrell, Angeline G., Equatorial topside magnetic
field-aligned ion drifts at solar minimum, The University of Texas at Dallas, ProQuest Dissertations Publishing, 2012.
3507604.

Discussion of cleaning parameters for ion temperature can be found in: Hairston, M. R., W. R. Coley, and R. A.
Heelis (2010), Mapping the duskside topside ionosphere with CINDI and DMSP, J. Geophys. Res.,115, A08324,
doi:10.1029/2009JA015051.

4.1.2 Properties

platform ‘cnofs’

name ‘ivm’

tag None supported

inst_id None supported

9

pysatNASA Documentation, Release 0.0.3-alpha

4.1.3 Warnings

• The sampling rate of the instrument changes on July 29th, 2010. The rate is attached to the instrument object as
.sample_rate.

• The cleaning parameters for the instrument are still under development.

pysatNASA.instruments.cnofs_ivm.clean(self)
Clean C/NOFS IVM data to the specified level.

pysatNASA.instruments.cnofs_ivm.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

pysatNASA.instruments.cnofs_ivm.preprocess(self)
Apply C/NOFS IVM default attributes.

4.2 C/NOFS PLP

Module for the C/NOFS PLP instrument.

Supports the Planar Langmuir Probe (PLP) onboard the Communication and Navigation Outage Forecasting System
(C/NOFS) satellite. Downloads data from the NASA Coordinated Data Analysis Web (CDAWeb).

Description from CDAWeb:

The Planar Langmuir Probe on C/NOFS is a suite of 2 current measuring sensors mounted on the ram facing surface
of the spacecraft. The primary sensor is an Ion Trap (conceptually similar to RPAs flown on many other spacecraft)
capable of measuring ion densities as low as 1 cm-3 with a 12 bit log electrometer. The secondary senor is a swept
bias planar Langmuir probe (Surface Probe) capable of measuring Ne, Te, and spacecraft potential.

The ion number density is the one second average of the ion density sampled at either 32, 256, 512, or 1024 Hz
(depending on the mode).

The ion density standard deviation is the standard deviation of the samples used to produce the one second average
number density.

DeltaN/N is the detrened ion number density 1 second standard deviation divided by the mean 1 sec density.

The electron density, electron temperature, and spacecraft potential are all derived from a least squares fit to the current-
bias curve from the Surface Probe.

The data is PRELIMINARY, and as such, is intended for BROWSE PURPOSES ONLY.

4.2.1 References

A brief discussion of the C/NOFS mission and instruments can be found at de La Beaujardière, O., et
al. (2004), C/NOFS: A mission to forecast scintillations, J. Atmos. Sol. Terr. Phys., 66, 1573–1591,
doi:10.1016/j.jastp.2004.07.030.

10 Chapter 4. Supported Instruments

pysatNASA Documentation, Release 0.0.3-alpha

4.2.2 Properties

platform ‘cnofs’

name ‘plp’

tag None supported

inst_id None supported

4.2.3 Warnings

• The data are PRELIMINARY, and as such, are intended for BROWSE PURPOSES ONLY.

• Currently no cleaning routine.

• Module not written by PLP team.

pysatNASA.instruments.cnofs_plp.clean(self)
Clean C/NOFS PLP data to the specified level.

pysatNASA.instruments.cnofs_plp.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

4.3 C/NOFS VEFI

Module for the C/NOFS VEFI instrument.

Supports the Vector Electric Field Instrument (VEFI) onboard the Communication and Navigation Outage Forecasting
System (C/NOFS) satellite. Downloads data from the NASA Coordinated Data Analysis Web (CDAWeb).

Description from CDAWeb:

The DC vector magnetometer on the CNOFS spacecraft is a three axis, fluxgate sensor with active thermal control
situated on a 0.6m boom. This magnetometer measures the Earth’s magnetic field using 16 bit A/D converters at 1
sample per sec with a range of .. 45,000 nT. Its primary objective on the CNOFS spacecraft is to enable an accurate
V x B measurement along the spacecraft trajectory. In order to provide an in-flight calibration of the magnetic field
data, we compare the most recent POMME model (the POtsdam Magnetic Model of the Earth, http://geomag.org/
models/pomme5.html) with the actual magnetometer measurements to help determine a set of calibration parameters
for the gains, offsets, and non-orthogonality matrix of the sensor axes. The calibrated magnetic field measurements are
provided in the data file here. The VEFI magnetic field data file currently contains the following variables: B_north
Magnetic field in the north direction B_up Magnetic field in the up direction B_west Magnetic field in the west direction

The data is PRELIMINARY, and as such, is intended for BROWSE PURPOSES ONLY.

4.3. C/NOFS VEFI 11

http://geomag.org/models/pomme5.html
http://geomag.org/models/pomme5.html

pysatNASA Documentation, Release 0.0.3-alpha

4.3.1 References

A brief discussion of the C/NOFS mission and instruments can be found at de La Beaujardière, O., et
al. (2004), C/NOFS: A mission to forecast scintillations, J. Atmos. Sol. Terr. Phys., 66, 1573–1591,
doi:10.1016/j.jastp.2004.07.030.

4.3.2 Properties

platform ‘cnofs’

name ‘vefi’

tag Select measurement type, one of {‘dc_b’}

inst_id None supported

4.3.3 Note

• tag = ‘dc_b’: 1 second DC magnetometer data

4.3.4 Warnings

• The data is PRELIMINARY, and as such, is intended for BROWSE PURPOSES ONLY.

• Limited cleaning routine.

• Module not written by VEFI team.

pysatNASA.instruments.cnofs_vefi.clean(self)
Clean VEFI data to the specified level.

pysatNASA.instruments.cnofs_vefi.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

4.4 DE2 LANG

Module for the DE2 LANG instrument.

Supports the Langmuir Probe (LANG) instrument on Dynamics Explorer 2 (DE2).

From CDAWeb:

The Langmuir Probe Instrument (LANG) was a cylindrical electrostatic probe that obtained measurements of electron
temperature, Te, and electron or ion concentration, Ne or Ni, respectively, and spacecraft potential. Data from this
investigation were used to provide temperature and density measurements along magnetic field lines related to ther-
mal energy and particle flows within the magnetosphere-ionosphere system, to provide thermal plasma conditions for
wave-particle interactions, and to measure large-scale and fine-structure ionospheric effects of energy deposition in
the ionosphere. The Langmuir Probe instrument was identical to that used on the AE satellites and the Pioneer Venus
Orbiter. Two independent sensors were connected to individual adaptive sweep voltage circuits which continuously
tracked the changing electron temperature and spacecraft potential, while autoranging electrometers adjusted their
gain in response to the changing plasma density. The control signals used to achieve this automatic tracking provided
a continuous monitor of the ionospheric parameters without telemetering each volt-ampere (V-I) curve. Furthermore,

12 Chapter 4. Supported Instruments

pysatNASA Documentation, Release 0.0.3-alpha

internal data storage circuits permitted high resolution, high data rate sampling of selected V-I curves for transmission
to ground to verify or correct the inflight processed data. Time resolution was 0.5 seconds.

4.4.1 References

J. P. Krehbiel, L. H. Brace, R. F. Theis, W. H. Pinkus, and R. B. Kaplan, “The Dynamics Explorer 2 Langmuir Probe
(LANG)”, Space Sci. Instrum., 5, 493-502, 1981.

4.4.2 Properties

platform ‘de2’

name ‘lang’

inst_id None Supported

tag None Supported

4.4.3 Warnings

• Currently no cleaning routine.

pysatNASA.instruments.de2_lang.clean(self)
Clean DE2 LANG data to the specified level.

pysatNASA.instruments.de2_lang.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

4.5 DE2 NACS

The DE2 NACS instrument.

Supports the Neutral Atmosphere Composition Spectrometer (NACS) instrument on Dynamics Explorer 2 (DE2).

From CDAWeb:

The Neutral Atmosphere Composition Spectrometer (NACS) was designed to obtain in situ measurements of the neu-
tral atmospheric composition and to study the variations of the neutral atmosphere in response to energy coupled into
it from the magnetosphere. Because temperature enhancements, large-scale circulation cells, and wave propagation
are produced by energy input (each of which posseses a specific signature in composition variation), the measurements
permitted the study of the partition, flow, and deposition of energy from the magnetosphere. Specifically, the investiga-
tion objective was to characterize the composition of the neutral atmosphere with particular emphasis on variability in
constituent densities driven by interactions in the atmosphere, ionosphere, and magnetosphere system. The quadrupole
mass spectrometer used was nearly identical to those flown on the AE-C, -D, and -E missions. The electron- impact
ion source was used in a closed mode. Atmospheric particles entered an antechamber through a knife-edged orifice,
where they were thermalized to the instrument temperature. The ions with the selected charge-to-mass ratios had sta-
ble trajectories through the hyperbolic electric field, exited the analyzer, and entered the detection system. An off-axis
beryllium-copper dynode multiplier operating at a gain of 2.E6 provided an output pulse of electrons for each ion ar-
rival. The detector output had a pulse rate proportional to the neutral density in the ion source of the selected mass.
The instrument also included two baffles that scanned across the input orifice for optional measurement of the zonal
and vertical components of the neutral wind. The mass select system provided for 256 mass values between 0 and 51

4.5. DE2 NACS 13

pysatNASA Documentation, Release 0.0.3-alpha

atomic mass units (u) or each 0.2 u. It was possible to call any one of these mass numbers into each of eight 0.016-s
intervals. This sequence was repeated each 0.128 s.

This data set includes daily files of the PI-provided DE-2 NACS 1-second data and corresponding orbit parameters.
The data set was generated at NSSDC from the original PI-provided data and software (SPTH-00010) and from the
orbit/attitude database and software that is part of the DE-2 UA data set (SPIO-00174). The original NACS data were
provided by the PI team in a highly compressed VAX/VMS binary format on magnetic tapes. The data set covers the
whole DE-2 mission time period. Each data point is an average over the normally 8 measurements per second. Densities
and relative errors are provided for atomic oxygen (O), molecular nitrogen (N2), helium (He), atomic nitrogen (N), and
argon (Ar). The data quality is generally quite good below 500 km, but deteriorates towards higher altitudes as oxygen
and molecular nitrogen approach their background values (which could only be determined from infrequent spinning
orbits) and the count rate for Ar becomes very low. The difference between minimum (background) and maximum
count rate for atomic nitrogen (estimated from mass 30) was so small that results are generally poor. Data were lost
between 12 March 1982 and 31 March 1982 when the counter overflowed.

4.5.1 References

G. R. Carrignan, B. P. Block, J. C. Maurer, A. E. Hedin, C. A. Reber, N. W. Spencer, “The neutral mass spectrometer
on Dynamics Explorer B”, Space Sci. Instrum., 5, 429-441, 1981.

4.5.2 Properties

platform ‘de2’

name ‘nacs’

inst_id None Supported

tag None Supported

4.5.3 Warnings

• Currently no cleaning routine.

pysatNASA.instruments.de2_nacs.clean(self)
Clean DE2 NACS data to the specified level.

pysatNASA.instruments.de2_nacs.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

4.6 DE2 RPA

Module for the DE2 RPA instrument.

Supports the Retarding Potential Analyzer (RPA) instrument on Dynamics Explorer 2 (DE2).

From CDAWeb:

The Retarding Potential Analyzer (RPA) measured the bulk ion velocity in the direction of the spacecraft motion, the
constituent ion concentrations, and the ion temperature along the satellite path. These parameters were derived from
a least squares fit to the ion number flux vs energy curve obtained by sweeping or stepping the voltage applied to the
internal retarding grids of the RPA. In addition, a separate wide aperture sensor, a duct sensor, was flown to measure

14 Chapter 4. Supported Instruments

pysatNASA Documentation, Release 0.0.3-alpha

the spectral characteristics of iregularities in the total ion concentration. The measured parameters obtained from this
investigation were important to the understanding of mechanisms that influence the plasma; i.e., to understand the
coupling between the solar wind and the earth’s atmosphere. The measurements were made with a multigridded planar
retarding potential analyzer very similar in concept and geometry to the instruments carried on the AE satellites. The
retarding potential was variable in the range from approximately +32 to 0 V. The details of this voltage trace, and
whether it was continuous or stepped, depended on the operating mode of the instrument. Specific parameters deduced
from these measurements were ion temperature; vehicle potential; ram component of the ion drift velocity; the ion and
electron concentration irregularity spectrum; and the concentration of H+, He+, O+, and Fe+, and of molecular ions
near perigee.

It includes the DUCT portion of the high resolutiondata from the Dynamics Explorer 2 (DE-2) Retarding Potential
Analyzer (RPA) for the whole DE-2 mission time period in ASCII format. This version was generated at NSSDC from
the PI-provided binary data (SPIO-00232). The DUCT files include RPA measurements ofthe total ion concentration
every 64 times per second. Due to a failure in the instrument memory system RPA data are not available from 81317
06:26:40 UT to 82057 13:16:00 UT. This data set is based on the revised version of the RPA files that was submitted
by the PI team in June of 1995. The revised RPA data include a correction to the spacecraft potential.

4.6.1 References

W. B. Hanson, R. A. Heelis, R. A. Power, C. R. Lippincott, D. R. Zuccaro, B. J. Holt, L. H. Harmon, and S. Sanatani,
“The retarding potential analyzer for dynamics explorer-B,” Space Sci. Instrum. 5, 503–510 (1981).

4.6.2 Properties

platform ‘de2’

name ‘rpa’

inst_id None Supported

tag None Supported

4.6.3 Warnings

• Currently no cleaning routine.

pysatNASA.instruments.de2_rpa.clean(self)
Clean DE2 RPA data to the specified level.

pysatNASA.instruments.de2_rpa.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

4.6. DE2 RPA 15

pysatNASA Documentation, Release 0.0.3-alpha

4.7 DE2 WATS

Module for the DE2 WATS instrument.

Supports the Wind and Temperature Spectrometer (WATS) instrument on Dynamics Explorer 2 (DE2).

From CDAWeb:

The Wind and Temperature Spectrometer (WATS) measured the in situ neutral winds, the neutral particle temperatures,
and the concentrations of selected gases. The objective of this investigation was to study the interrelationships among
the winds, temperatures, plasma drift, electric fields, and other properties of the thermosphere that were measured by
this and other instruments on the spacecraft. Knowledge of how these properties are interrelated contributed to an un-
derstanding of the consequences of the acceleration of neutral particles by the ions in the ionosphere, the acceleration
of ions by neutrals creating electric fields, and the related energy transfer between the ionosphere and the magneto-
sphere. Three components of the wind, one normal to the satellite velocity vector in the horizontal plane, one vertical,
and one in the satellite direction were measured. A retarding potential quadrupole mass spectrometer, coupled to the
atmosphere through a precisely orificed antechamber, was used. It was operated in either of two modes: one employed
the retarding capability and the other used the ion source as a conventional nonretarding source. Two scanning baffles
were used in front of the mass spectrometer: one moved vertically and the other moved horizontally. The magnitudes
of the horizontal and vertical components of the wind normal to the spacecraft velocity vector were computed from
measurements of the angular relationship between the neutral particle stream and the sensor. The component of the
total stream velocity in the satellite direction was measured directly by the spectrometer system through determination
of the required retarding potential. At altitudes too high for neutral species measurements, the planned operation re-
quired the instrument to measure the thermal ion species only. A series of four sequentially occurring slots –each a 2-s
long measurement interval– was adapted for the basic measurement format of the instrument. Different functions were
commanded into these slots in any combination, one per measurement interval. Thus the time resolution can be 2, 4, 6,
or 8 seconds. Further details are found in This data set consists of the high-resolution data of the Dynamics Explorer
2 Wind and Temperature Spectrometer (WATS) experiment. The files contain the neutral density, temperature and
horizontal (zonal) wind velocity, and orbital parameters in ASCII format. The time resolution is typically 2 seconds.
Data are given as daily files (typically a few 100 Kbytes each). PI-provided software (WATSCOR) was used to correct
the binary data set. NSSDC-developed software was used to add the orbit parameters, to convert the binary into ASCII
format and to combine the (PI-provided) orbital files into daily files. For more on DE-2, WATS, and the binary data,
see the WATS_VOLDESC_SFDU_DE.DOC and WATS_FORMAT_SFDU_DE.DOC files. More information about
the processing done at NSSDC is given in WATS_NSSDC_PRO_DE.DOC.

4.7.1 References

N. W. Spencer, L. E. Wharton, H. B. Niemann, A. E. Hedin, G. R. Carrignan, J. C. Maurer, “The Dynamics Explorer
Wind and Temperature Spectrometer”, Space Sci. Instrum., 5, 417-428, 1981.

4.7.2 Properties

platform ‘de2’

name ‘wats’

inst_id None Supported

tag None Supported

16 Chapter 4. Supported Instruments

pysatNASA Documentation, Release 0.0.3-alpha

4.7.3 Warnings

• Currently no cleaning routine.

pysatNASA.instruments.de2_wats.clean(self)
Clean DE2 LANG data to the specified level.

pysatNASA.instruments.de2_wats.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

4.8 FORMOSAT-1 IVM

Module for the ICON EUV instrument.

Supports the Ion Velocity Meter (IVM) onboard the Formosat-1 (formerly ROCSAT-1) mission. Downloads data from
the NASA Coordinated Data Analysis Web (CDAWeb).

4.8.1 Properties

platform ‘formosat1’

name ‘ivm’

tag None

inst_id None supported

4.8.2 Warnings

• Currently no cleaning routine.

pysatNASA.instruments.formosat1_ivm.clean(self)
Clean FORMOSAT-1 IVM data to the specified level.

pysatNASA.instruments.formosat1_ivm.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

4.9 ICON EUV

Module for the ICON EUV instrument.

Supports the Extreme Ultraviolet (EUV) imager onboard the Ionospheric CONnection Explorer (ICON) satellite. Ac-
cesses local data in netCDF format.

4.8. FORMOSAT-1 IVM 17

pysatNASA Documentation, Release 0.0.3-alpha

4.9.1 Properties

platform ‘icon’

name ‘euv’

tag None supported

4.9.2 Warnings

• The cleaning parameters for the instrument are still under development.

• Only supports level-2 data.

4.9.3 Examples

import pysat
euv = pysat.Instrument(platform='icon', name='euv')
euv.download(dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 31))
euv.load(2020, 1)

By default, pysat removes the ICON level tags from variable names, ie, ICON_L27_Ion_Density becomes Ion_Density.
To retain the original names, use

euv = pysat.Instrument(platform='icon', name='euv',
keep_original_names=True)

pysatNASA.instruments.icon_euv.clean(self)
Clean ICON EUV data to the specified level.

pysatNASA.instruments.icon_euv.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

Parameters

inst [pysat.Instrument] Instrument class object

pysatNASA.instruments.icon_euv.load(fnames, tag=None, inst_id=None, keep_original_names=False)
Load ICON EUV data into xarray.Dataset object and pysat.Meta objects.

This routine is called as needed by pysat. It is not intended for direct user interaction.

Parameters

fnames [array-like] Iterable of filename strings, full path, to data files to be loaded. This input
is nominally provided by pysat itself.

tag [string] Tag name used to identify particular data set to be loaded. This input is nominally
provided by pysat itself. (default=None)

inst_id [string] Satellite ID used to identify particular data set to be loaded. This input is nomi-
nally provided by pysat itself. (default=None)

keep_original_names [boolean] If True then the names as given in the netCDF ICON file will
be used as is. If False, a preamble is removed. (default=False)

Returns

18 Chapter 4. Supported Instruments

pysatNASA Documentation, Release 0.0.3-alpha

data [xr.Dataset] An xarray Dataset with data prepared for the pysat.Instrument

meta [pysat.Meta] Metadata formatted for a pysat.Instrument object.

Examples

inst = pysat.Instrument('icon', 'euv', tag='', inst_id='a')
inst.load(2020, 1)

pysatNASA.instruments.icon_euv.preprocess(self, keep_original_names=False)
Adjust epoch timestamps to datetimes and remove variable preambles.

Parameters

keep_original_names [boolean] if True then the names as given in the netCDF ICON file will
be used as is. If False, a preamble is removed. (default=False)

4.10 ICON FUV

Module for the ICON FUV instrument.

Supports the Far Ultraviolet (FUV) imager onboard the Ionospheric CONnection Explorer (ICON) satellite. Accesses
local data in netCDF format.

4.10.1 Properties

platform ‘icon’

name ‘fuv’

tag None supported

4.10.2 Warnings

• The cleaning parameters for the instrument are still under development.

• Only supports level-2 data.

4.10.3 Example

import pysat
fuv = pysat.Instrument(platform='icon', name='fuv', tag='day')
fuv.download(dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 31))
fuv.load(2020, 1)

By default, pysat removes the ICON level tags from variable names, ie, ICON_L27_Ion_Density becomes Ion_Density.
To retain the original names, use

fuv = pysat.Instrument(platform='icon', name='fuv', tag=day',
keep_original_names=True)

4.10. ICON FUV 19

pysatNASA Documentation, Release 0.0.3-alpha

pysatNASA.instruments.icon_fuv.clean(self)
Clean ICON FUV data to the specified level.

pysatNASA.instruments.icon_fuv.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

Parameters

inst [pysat.Instrument] Instrument class object

pysatNASA.instruments.icon_fuv.load(fnames, tag=None, inst_id=None, keep_original_names=False)
Load ICON FUV data into xarray.Dataset object and pysat.Meta objects.

This routine is called as needed by pysat. It is not intended for direct user interaction.

Parameters

fnames [array-like] iterable of filename strings, full path, to data files to be loaded. This input
is nominally provided by pysat itself.

tag [string] tag name used to identify particular data set to be loaded. This input is nominally
provided by pysat itself.

inst_id [string] Satellite ID used to identify particular data set to be loaded. This input is nomi-
nally provided by pysat itself.

keep_original_names [boolean] if True then the names as given in the netCDF ICON file will
be used as is. If False, a preamble is removed.

Returns

data [xr.Dataset] An xarray Dataset with data prepared for the pysat.Instrument

meta [pysat.Meta] Metadata formatted for a pysat.Instrument object.

Examples

inst = pysat.Instrument('icon', 'fuv')
inst.load(2020, 1)

pysatNASA.instruments.icon_fuv.preprocess(self, keep_original_names=False)
Adjust epoch timestamps to datetimes and remove variable preambles.

Parameters

keep_original_names [boolean] if True then the names as given in the netCDF ICON file will
be used as is. If False, a preamble is removed. (default=False)

20 Chapter 4. Supported Instruments

pysatNASA Documentation, Release 0.0.3-alpha

4.11 ICON IVM

Module for the ICON IVM instrument.

Supports the Ion Velocity Meter (IVM) onboard the Ionospheric Connections (ICON) Explorer.

4.11.1 Properties

platform ‘icon’

name ‘ivm’

tag None supported

inst_id ‘a’ or ‘b’

4.11.2 Example

import pysat
ivm = pysat.Instrument(platform='icon', name='ivm', inst_id='a')
ivm.download(dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 31))
ivm.load(2020, 1)

By default, pysat removes the ICON level tags from variable names, ie, ICON_L27_Ion_Density becomes Ion_Density.
To retain the original names, use

ivm = pysat.Instrument(platform='icon', name='ivm', inst_id='a',
keep_original_names=True)

4.11.3 Author

R. A. Stoneback

pysatNASA.instruments.icon_ivm.clean(self)
Clean ICON IVM data to the specified level.

pysatNASA.instruments.icon_ivm.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

Parameters

inst [pysat.Instrument] Instrument class object

pysatNASA.instruments.icon_ivm.load(fnames, tag=None, inst_id=None, keep_original_names=False)
Load ICON IVM data into pandas.DataFrame and pysat.Meta objects.

This routine is called as needed by pysat. It is not intended for direct user interaction.

Parameters

fnames [array-like] iterable of filename strings, full path, to data files to be loaded. This input
is nominally provided by pysat itself.

tag [string] tag name used to identify particular data set to be loaded. This input is nominally
provided by pysat itself.

4.11. ICON IVM 21

pysatNASA Documentation, Release 0.0.3-alpha

inst_id [string] Satellite ID used to identify particular data set to be loaded. This input is nomi-
nally provided by pysat itself.

keep_original_names [boolean] if True then the names as given in the netCDF ICON file will
be used as is. If False, a preamble is removed.

Returns

data [pds.DataFrame] A pandas DataFrame with data prepared for the pysat.Instrument

meta [pysat.Meta] Metadata formatted for a pysat.Instrument object.

Examples

inst = pysat.Instrument('icon', 'ivm', inst_id='a', tag='')
inst.load(2020, 1)

pysatNASA.instruments.icon_ivm.preprocess(self, keep_original_names=False)
Remove variable preambles.

Parameters

keep_original_names [boolean] if True then the names as given in the netCDF ICON file will
be used as is. If False, a preamble is removed. (default=False)

4.12 ICON MIGHTI

Module for the ICON MIGHTI instrument.

Supports the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on-
board the Ionospheric CONnection Explorer (ICON) satellite. Accesses local data in netCDF format.

4.12.1 Properties

platform ‘icon’

name ‘mighti’

tag Supports ‘los_wind_green’, ‘los_wind_red’, ‘vector_wind_green’, ‘vector_wind_red’, ‘temperature’. Note that not
every data product available for every inst_id

inst_id ‘vector’, ‘a’, or ‘b’

4.12.2 Warnings

• The cleaning parameters for the instrument are still under development.

• Only supports level-2 data.

22 Chapter 4. Supported Instruments

pysatNASA Documentation, Release 0.0.3-alpha

4.12.3 Example

import pysat
mighti = pysat.Instrument('icon', 'mighti', tag='vector_wind_green',

inst_id='vector', clean_level='clean')
mighti.download(dt.datetime(2020, 1, 30), dt.datetime(2020, 1, 31))
mighti.load(2020, 2)

By default, pysat removes the ICON level tags from variable names, ie, ICON_L27_Ion_Density becomes Ion_Density.
To retain the original names, use

mighti = pysat.Instrument(platform='icon', name='mighti',
tag='vector_wind_green', inst_id='vector',
clean_level='clean',
keep_original_names=True)

4.12.4 Note

Currently red and green data products are bundled together in zip files on the server. This results in ‘double download-
ing’. This will be fixed once data is transfered to SPDF.

pysatNASA.instruments.icon_mighti.clean(self)
Clean ICON MIGHTI data to the specified level.

pysatNASA.instruments.icon_mighti.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

Parameters

inst [pysat.Instrument] Instrument class object

pysatNASA.instruments.icon_mighti.load(fnames, tag=None, inst_id=None, keep_original_names=False)
Load ICON MIGHTI data into xarray.Dataset and pysat.Meta objects.

This routine is called as needed by pysat. It is not intended for direct user interaction.

Parameters

fnames [array-like] iterable of filename strings, full path, to data files to be loaded. This input
is nominally provided by pysat itself.

tag [string] tag name used to identify particular data set to be loaded. This input is nominally
provided by pysat itself.

inst_id [string] Satellite ID used to identify particular data set to be loaded. This input is nomi-
nally provided by pysat itself.

keep_original_names [boolean] if True then the names as given in the netCDF ICON file will
be used as is. If False, a preamble is removed.

Returns

data [xr.Dataset] An xarray Dataset with data prepared for the pysat.Instrument

meta [pysat.Meta] Metadata formatted for a pysat.Instrument object.

4.12. ICON MIGHTI 23

pysatNASA Documentation, Release 0.0.3-alpha

Examples

inst = pysat.Instrument('icon', 'fuv')
inst.load(2020, 1)

pysatNASA.instruments.icon_mighti.preprocess(self, keep_original_names=False)
Adjust epoch timestamps to datetimes and remove variable preambles.

Parameters

keep_original_names [boolean] if True then the names as given in the netCDF ICON file will
be used as is. If False, a preamble is removed. (default=False)

4.13 ISS FPMU

Module for the ISS FPMU instrument.

Supports the Floating Potential Measurement Unit (FPMU) instrument onboard the International Space Station (ISS).
Downloads data from the NASA Coordinated Data Analysis Web (CDAWeb).

4.13.1 Properties

platform ‘iss’

name ‘fpmu’

tag None Supported

inst_id None supported

4.13.2 Warnings

• Currently clean only replaces fill values with Nans.

• Module not written by FPMU team.

pysatNASA.instruments.iss_fpmu.clean(self)
Clean ISS FPMU data to the specified level.

pysatNASA.instruments.iss_fpmu.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

4.14 OMNI HRO

Module for the OMNI HRO instrument.

Supports OMNI Combined, Definitive, IMF and Plasma Data, and Energetic Proton Fluxes, Time-Shifted to the Nose of
the Earth’s Bow Shock, plus Solar and Magnetic Indices. Downloads data from the NASA Coordinated Data Analysis
Web (CDAWeb). Supports both 5 and 1 minute files.

24 Chapter 4. Supported Instruments

pysatNASA Documentation, Release 0.0.3-alpha

4.14.1 Properties

platform ‘omni’

name ‘hro’

tag Select time between samples, one of {‘1min’, ‘5min’}

inst_id None supported

4.14.2 Note

Files are stored by the first day of each month. When downloading use omni.download(start, stop, freq=’MS’) to only
download days that could possibly have data. ‘MS’ gives a monthly start frequency.

This material is based upon work supported by the National Science Foundation under Grant Number 1259508.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

4.14.3 Warnings

• Currently no cleaning routine. Though the CDAWEB description indicates that these level-2 products are ex-
pected to be ok.

• Module not written by OMNI team.

4.14.4 Custom Functions

time_shift_to_magnetic_poles Shift time from bowshock to intersection with one of the magnetic poles

calculate_clock_angle Calculate the clock angle and IMF mag in the YZ plane

calculate_imf_steadiness Calculate the IMF steadiness using clock angle and magnitude in the YZ plane

calculate_dayside_reconnection Calculate the dayside reconnection rate

pysatNASA.instruments.omni_hro.calculate_clock_angle(inst)
Calculate IMF clock angle and magnitude of IMF in GSM Y-Z plane.

Parameters

inst [pysat.Instrument] Instrument with OMNI HRO data

pysatNASA.instruments.omni_hro.calculate_imf_steadiness(inst, steady_window=15,
min_window_frac=0.75,
max_clock_angle_std=28.64788975654116,
max_bmag_cv=0.5)

Calculate IMF steadiness and add parameters to instrument data.

Parameters

inst [pysat.Instrument] Instrument with OMNI HRO data

steady_window [int] Window for calculating running statistical moments in min (default=15)

min_window_frac [float] Minimum fraction of points in a window for steadiness to be calcu-
lated (default=0.75)

4.14. OMNI HRO 25

pysatNASA Documentation, Release 0.0.3-alpha

max_clock_angle_std [float] Maximum standard deviation of the clock angle in degrees (de-
fault=22.5)

max_bmag_cv [float] Maximum coefficient of variation of the IMF magnitude in the GSM Y-Z
plane (default=0.5)

pysatNASA.instruments.omni_hro.time_shift_to_magnetic_poles(inst)
Shift OMNI times to intersection with the magnetic pole.

Parameters

inst [Instrument class object] Instrument with OMNI HRO data

Warning: Use at own risk.

4.15 SES14 GOLD

Module for the SES14 GOLD instrument.

Supports the Nmax data product from the Global Observations of the Limb and Disk (GOLD) satellite. Accesses data
in netCDF format.

4.15.1 Properties

platform ‘ses14’

name ‘gold’

tag ‘nmax’

4.15.2 Warnings

• The cleaning parameters for the instrument are still under development.

• strict_time_flag must be set to False

4.15.3 Examples

import datetime as dt
import pysat
nmax = pysat.Instrument(platform='ses14', name='gold', tag='nmax'

strict_time_flag=False)
nmax.download(dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 31))
nmax.load(2020, 1)

pysatNASA.instruments.ses14_gold.clean(self)
Clean SES14 GOLD data to the specified level.

Routine is called by pysat, and not by the end user directly.

Parameters

26 Chapter 4. Supported Instruments

pysatNASA Documentation, Release 0.0.3-alpha

self [pysat.Instrument] Instrument class object, whose attribute clean_level is used to return the
desired level of data selectivity.

pysatNASA.instruments.ses14_gold.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

Parameters

self [pysat.Instrument] Instrument class object

pysatNASA.instruments.ses14_gold.load(fnames, tag=None, inst_id=None)
Load GOLD NMAX data into xarray.Dataset and pysat.Meta objects.

This routine is called as needed by pysat. It is not intended for direct user interaction.

Parameters

fnames [array-like] iterable of filename strings, full path, to data files to be loaded. This input
is nominally provided by pysat itself.

tag [string] tag name used to identify particular data set to be loaded. This input is nominally
provided by pysat itself.

inst_id [string] Satellite ID used to identify particular data set to be loaded. This input is nomi-
nally provided by pysat itself.

**kwargs [extra keywords] Passthrough for additional keyword arguments specified when in-
stantiating an Instrument object. These additional keywords are passed through to this rou-
tine by pysat.

Returns

data [xr.Dataset] An xarray Dataset with data prepared for the pysat.Instrument

meta [pysat.Meta] Metadata formatted for a pysat.Instrument object.

Examples

inst = pysat.Instrument('gold', 'nmax')
inst.load(2019, 1)

4.16 TIMED SABER

The TIMED SABER instrument.

Supports the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Ther-
mosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite.

4.16. TIMED SABER 27

pysatNASA Documentation, Release 0.0.3-alpha

4.16.1 Properties

platform [string] ‘timed’

name [string] ‘saber’

tag [string] None supported

inst_id [string] None supported

4.16.2 Note

SABER “Rules of the Road” for DATA USE Users of SABER data are asked to respect the following guidelines

• Mission scientific and model results are open to all.

• Guest investigators, and other members of the scientific community or general public should contact the PI or
designated team member early in an analysis project to discuss the appropriate use of the data.

• Users that wish to publish the results derived from SABER data should normally offer co-authorship to the PI,
Associate PI or designated team members. Co-authorship may be declined. Appropriate acknowledgement of
institutions, personnel, and funding agencies should be given.

• Users should heed the caveats of SABER team members as to the interpretation and limitations of the data.
SABER team members may insist that such caveats be published, even if co-authorship is declined. Data and
model version numbers should also be specified.

• Pre-prints of publications and conference abstracts should be widely distributed to interested parties within the
mission and related projects.

4.16.3 Warnings

• Note on Temperature Errors: http://saber.gats-inc.com/temp_errors.php

• No cleaning routine

pysatNASA.instruments.timed_saber.clean(self)
Clean TIMED SABER data to the specified level.

pysatNASA.instruments.timed_saber.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

4.17 TIMED SEE

Supports the SEE instrument on TIMED.

Downloads data from the NASA Coordinated Data Analysis Web (CDAWeb).

Supports two options for loading that may be specified at instantiation.

28 Chapter 4. Supported Instruments

http://saber.gats-inc.com/temp_errors.php

pysatNASA Documentation, Release 0.0.3-alpha

4.17.1 Properties

platform ‘timed’

name ‘see’

tag None

inst_id None supported

flatten_twod If True, then two dimensional data is flattened across columns. Name mangling is used to group data,
first column is ‘name’, last column is ‘name_end’. In between numbers are appended ‘name_1’, ‘name_2’, etc.
All data for a given 2D array may be accessed via, data.loc[:, ‘item’:’item_end’] If False, then 2D data is stored
as a series of DataFrames, indexed by Epoch. data.loc[0, ‘item’] (default=True)

4.17.2 Note

• no tag required

4.17.3 Warnings

• Currently no cleaning routine.

pysatNASA.instruments.timed_see.clean(self)
Clean TIMED SEE data to the specified level.

pysatNASA.instruments.timed_see.init(self)
Initialize the Instrument object with instrument specific values.

Runs once upon instantiation.

4.17. TIMED SEE 29

pysatNASA Documentation, Release 0.0.3-alpha

30 Chapter 4. Supported Instruments

CHAPTER

FIVE

SUPPORTED CONSTELLATIONS

5.1 DE2

The Dynamics Explorer 2 spacecraft. Includes the instruments

• DE2 LANG

• DE2 NACS

• DE2 RPA

• DE2 WATS

5.2 ICON

The Ionosphere CONnection explorer spacecraft. Includes the instruments

• ICON EUV

• ICON FUV

• ICON IVM

• ICON MIGHTI

31

pysatNASA Documentation, Release 0.0.3-alpha

32 Chapter 5. Supported Constellations

CHAPTER

SIX

EXAMPLES

Here are some examples that demonstrate how to use various pysatNASA tools

6.1 Loading ICON IVM data

pysatNASA uses pysat to load space science instrument data. As specified in the pysat tutorial, data may be loaded
using the following commands. Data from the Ion Velocity Meter on board the Ionospheric CONnection Explorer
(ICON) is used as an example.

import datetime as dt
import pysat
import pysatNASA as py_nasa

pysat.utils.registry.register_by_module(py_nasa.instruments)

old_time = dt.datetime(2020, 1, 1)
ivm = pysat.Instrument(platform='icon', name='ivm',

inst_id='a', update_files=True)
ivm.download(start=old_time)
ivm.load(date=old_time)
print(ivm)

The output shows some basic info about the instrument object, as well as information about the data loaded.

pysat Instrument object

Platform: 'icon'
Name: 'ivm'
Tag: ''
Instrument id: 'a'

Data Processing

Cleaning Level: 'clean'
Data Padding: None
Keyword Arguments Passed to list_files: {}
Keyword Arguments Passed to load: {}
Keyword Arguments Passed to preprocess: {}
Keyword Arguments Passed to download: {}
Keyword Arguments Passed to list_remote_files: {}

(continues on next page)

33

https://github.com/pysat/pysat
https://pysat.readthedocs.io/en/latest/tutorial.html
https://www.nasa.gov/icon

pysatNASA Documentation, Release 0.0.3-alpha

(continued from previous page)

Keyword Arguments Passed to clean: {}
Keyword Arguments Passed to init: {}
Custom Functions: 0 applied

Local File Statistics

Number of files: 402
Date Range: 22 October 2019 --- 29 December 2020

Loaded Data Statistics

Date: 01 January 2020
DOY: 001
Time range: 31 December 2019 23:59:57 --- 01 January 2020 23:59:55
Number of Times: 86400
Number of variables: 91

Variable Names:
A_Activity A_Status Altitude

...
Unit_Vector_Zonal_X Unit_Vector_Zonal_Y Unit_Vector_Zonal_Z

pysat Meta object

Tracking 21 metadata values
Metadata for 92 standard variables
Metadata for 0 ND variables

34 Chapter 6. Examples

CHAPTER

SEVEN

GUIDE FOR DEVELOPERS

7.1 Contributor Covenant Code of Conduct

7.1.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

7.1.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

35

pysatNASA Documentation, Release 0.0.3-alpha

7.1.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

7.1.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

7.1.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
pysat.developers@gmail.com. The project team will review and investigate all complaints, and will respond in a way
that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to
the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

7.1.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://contributor-
covenant.org/version/1/4

7.2 Contributing

Bug reports, feature suggestions, and other contributions are greatly appreciated! pysat is a community-driven project
and welcomes both feedback and contributions.

Come join us on Slack! An invitation to the pysat workspace is available in the ‘About’ section of the pysat GitHub
Repository. Development meetings are generally held fortnightly.

7.2.1 Short version

• Submit bug reports and feature requests at GitHub

• Make pull requests to the develop branch

36 Chapter 7. Guide for Developers

mailto:pysat.developers@gmail.com
https://contributor-covenant.org
https://contributor-covenant.org/version/1/4/
https://contributor-covenant.org/version/1/4/
https://github.com/pysat/pysat
https://github.com/pysat/pysat
https://github.com/pysat/pysatNASA/issues

pysatNASA Documentation, Release 0.0.3-alpha

7.2.2 Bug reports

When reporting a bug please include:

• Your operating system name and version

• Any details about your local setup that might be helpful in troubleshooting

• Detailed steps to reproduce the bug

7.2.3 Feature requests and feedback

The best way to send feedback is to file an issue at GitHub.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that code contributions are welcome :)

7.2.4 Development

To set up pysatNASA for local development:

1. Fork pysatNASA on GitHub.

2. Clone your fork locally:

git clone git@github.com:your_name_here/pysatNASA.git

3. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

Tests for new instruments are performed automatically. See discussion here for more information on triggering
these standard tests.

Tests for custom functions should be added to the appropriately named file in pysatNASA/tests. For example,
custom functions for the OMNI HRO data are tested in pysatNASA/tests/test_omni_hro.py. If no test file
exists, then you should create one. This testing uses pytest, which will run tests on any python file in the test
directory that starts with test. Classes must begin with Test, and methods must begin with test as well.

4. When you’re done making changes, run all the checks to ensure that nothing is broken on your local system, as
well as check for flake8 compliance:

pytest -vs --flake8 pysatNASA

5. Update/add documentation (in docs), if relevant

6. Add your name to the .zenodo.json file as an author

7. Commit your changes:

git add .
git commit -m "AAA: Brief description of your changes"

7.2. Contributing 37

https://github.com/pysat/pysatNASA/issues
https://github.com/pysat/pysatNASA/issues
https://github.com/pysat/pysatNASA/fork
https://pysat.readthedocs.io/en/main/new_instrument.html#testing-support

pysatNASA Documentation, Release 0.0.3-alpha

Where AAA is a standard shorthand for the type of change (eg, BUG or DOC). pysat follows the numpy devel-
opment workflow, see the discussion there for a full list of this shorthand notation.

8. Once you are happy with the local changes, push to Github:

git push origin name-of-your-bugfix-or-feature

Note that each push will trigger the Continuous Integration workflow.

9. Submit a pull request through the GitHub website. Pull requests should be made to the develop branch.

7.2.5 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code, just make a pull request. Pull requests
should be made to the develop branch.

For merging, you should:

1. Include an example for use

2. Add a note to CHANGELOG.md about the changes

3. Update the author list in zenodo.json if applicable

4. Ensure that all checks passed (current checks include Github Actions and Coveralls)

If you don’t have all the necessary Python versions available locally or have trouble building all the testing environments,
you can rely on GitHub Actions to run the tests for each change you add in the pull request. Because testing here will
delay tests by other developers, please ensure that the code passes all tests on your local system first.

7.2.6 Project Style Guidelines

In general, pysat follows PEP8 and numpydoc guidelines. Pytest runs the unit and integration tests, flake8 checks for
style, and sphinx-build performs documentation tests. However, there are certain additional style elements that have
been adopted to ensure the project maintains a consistent coding style. These include:

• Line breaks should occur before a binary operator (ignoring flake8 W503)

• Combine long strings using join

• Preferably break long lines on open parentheses rather than using \

• Use no more than 80 characters per line

• Avoid using Instrument class key attribute names as unrelated variable names: platform, name, tag, and
inst_id

• The pysat logger is imported into each sub-module and provides status updates at the info and warning levels (as
appropriate)

• Several dependent packages have common nicknames, including:

– import datetime as dt

– import numpy as np

– import pandas as pds

– import xarray as xr

• When incrementing a timestamp, use dt.timedelta instead of pds.DateOffset when possible to reduce
program runtime

38 Chapter 7. Guide for Developers

https://numpy.org/doc/stable/dev/development_workflow.html
https://numpy.org/doc/stable/dev/development_workflow.html

pysatNASA Documentation, Release 0.0.3-alpha

• All classes should have __repr__ and __str__ functions

• Docstrings use Note instead of Notes

• Try to avoid creating a try/except statement where except passes

• Use setup and teardown in test classes

• Use pytest parametrize in test classes when appropriate

• Provide testing class methods with informative failure statements and descriptive, one-line docstrings

• Block and inline comments should use proper English grammar and punctuation with the exception of single
sentences in a block, which may then omit the final period

7.2. Contributing 39

pysatNASA Documentation, Release 0.0.3-alpha

40 Chapter 7. Guide for Developers

CHAPTER

EIGHT

MIGRATION FROM PYSAT 2

With the release of pysat 3.0.0, the pysat project now keeps instrument modules within distinct packages. Each of these
packages acts as an interface between the core pysat package and a unique data provider. pysatNASA fills this role for
the Space Physics Data Facility at NASA.

8.1 Registering the pysatNASA library

While each module can be loaded separately, users may find it easier to register all instruments.

import pysat
import pysatNASA
pysat.utils.registry.register_by_module(pysatNASA.instruments)

This creates a shortcut so that instruments may be loaded using only platform and name without having to load the
instrument package each time.

import pysat
ivm = pysat.Instrument('cnofs', 'ivm')

8.2 Modifying the directory structure

The internal directory structure has been updated in pysat 3.0.0 to include a separate layer for inst_id. Users who have
already downloaded data in a previous version should follow this tutorial to make their local data directories compatible
with the new version.

8.3 A Note about ICON data

Starting with pysatNASA 0.0.2, the data for the Ionospheric CONnection Explorer (ICON) is now accessed from the
SPDF server directly rather than the University of California at Berkeley server. There is a slight update in the file
names at the new location, which is not compatible with the previous versions of pysat. It is recommended that users
download this data using the new software.

41

https://spdf.gsfc.nasa.gov/
https://pysat.readthedocs.io/en/latest/tutorial/tutorial_v3_upgrade.html

pysatNASA Documentation, Release 0.0.3-alpha

42 Chapter 8. Migration from pysat 2

CHAPTER

NINE

CHANGE LOG

All notable changes to this project will be documented in this file. This project adheres to Semantic Versioning.

9.1 [0.0.3] - 2022-05-18

• Include flake8 linting of docstrings and style in Github Actions

• Include Windows tests in Github Actions

• Bug Fixes

– Expanded cleaning of ICON IVM ion drifts to more variables

– Fixed a bug in loading ICON IVM data (added multi_file_day = True)

– Fixed a bug where OMNI meta data float values are loaded as arrays

• Maintenance

– Removed dummy vars after importing instruments and constellations

– Updated NEP29 compliance in Github Actions

– Limit versions of hacking for improved pip compliance

– Update instrument template standards

– Updated documentation style

– Removed cap on cdflib

9.2 [0.0.2] - 2021-06-07

• Updated Instruments and routines to conform with changes made for pysat 3.0

• Added documentation

• Instrument Changes

– Preliminary support added for SES-14 GOLD Nmax

– Updated cleaning routines for C/NOFS IVM data

– Migrated remote server for ICON instruments to SPDF from UCB

– Renamed ROCSAT1 IVM as FORMOSAT1 IVM

– Dropped support for SPORT IVM (unlaunched, moved to pysatIncubator)

43

https://semver.org/

pysatNASA Documentation, Release 0.0.3-alpha

• Implements GitHub Actions as primary CI test environment

• Improved PEP8 compliance

• Replaced pysatCDF with cdflib support

• Bug Fixes

– remote_file_list error if start/stop dates unspecified

– Improved download robustness

9.3 [0.0.1] - 2020-08-13

• Initial port of existing routines from pysat

44 Chapter 9. Change Log

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

45

pysatNASA Documentation, Release 0.0.3-alpha

46 Chapter 10. Indices and tables

PYTHON MODULE INDEX

p
pysatNASA.instruments.cnofs_ivm, 9
pysatNASA.instruments.cnofs_plp, 10
pysatNASA.instruments.cnofs_vefi, 11
pysatNASA.instruments.de2_lang, 12
pysatNASA.instruments.de2_nacs, 13
pysatNASA.instruments.de2_rpa, 14
pysatNASA.instruments.de2_wats, 16
pysatNASA.instruments.formosat1_ivm, 17
pysatNASA.instruments.icon_euv, 17
pysatNASA.instruments.icon_fuv, 19
pysatNASA.instruments.icon_ivm, 21
pysatNASA.instruments.icon_mighti, 22
pysatNASA.instruments.iss_fpmu, 24
pysatNASA.instruments.omni_hro, 24
pysatNASA.instruments.ses14_gold, 26
pysatNASA.instruments.timed_saber, 27
pysatNASA.instruments.timed_see, 28

47

pysatNASA Documentation, Release 0.0.3-alpha

48 Python Module Index

INDEX

C
calculate_clock_angle() (in module pysat-

NASA.instruments.omni_hro), 25
calculate_imf_steadiness() (in module pysat-

NASA.instruments.omni_hro), 25
clean() (in module pysatNASA.instruments.cnofs_ivm),

10
clean() (in module pysatNASA.instruments.cnofs_plp),

11
clean() (in module pysatNASA.instruments.cnofs_vefi),

12
clean() (in module pysatNASA.instruments.de2_lang),

13
clean() (in module pysatNASA.instruments.de2_nacs),

14
clean() (in module pysatNASA.instruments.de2_rpa), 15
clean() (in module pysatNASA.instruments.de2_wats),

17
clean() (in module pysat-

NASA.instruments.formosat1_ivm), 17
clean() (in module pysatNASA.instruments.icon_euv),

18
clean() (in module pysatNASA.instruments.icon_fuv),

19
clean() (in module pysatNASA.instruments.icon_ivm),

21
clean() (in module pysat-

NASA.instruments.icon_mighti), 23
clean() (in module pysatNASA.instruments.iss_fpmu),

24
clean() (in module pysat-

NASA.instruments.ses14_gold), 26
clean() (in module pysat-

NASA.instruments.timed_saber), 28
clean() (in module pysatNASA.instruments.timed_see),

29

I
init() (in module pysatNASA.instruments.cnofs_ivm),

10
init() (in module pysatNASA.instruments.cnofs_plp), 11

init() (in module pysatNASA.instruments.cnofs_vefi),
12

init() (in module pysatNASA.instruments.de2_lang), 13
init() (in module pysatNASA.instruments.de2_nacs), 14
init() (in module pysatNASA.instruments.de2_rpa), 15
init() (in module pysatNASA.instruments.de2_wats), 17
init() (in module pysat-

NASA.instruments.formosat1_ivm), 17
init() (in module pysatNASA.instruments.icon_euv), 18
init() (in module pysatNASA.instruments.icon_fuv), 20
init() (in module pysatNASA.instruments.icon_ivm), 21
init() (in module pysatNASA.instruments.icon_mighti),

23
init() (in module pysatNASA.instruments.iss_fpmu), 24
init() (in module pysatNASA.instruments.ses14_gold),

27
init() (in module pysatNASA.instruments.timed_saber),

28
init() (in module pysatNASA.instruments.timed_see),

29

L
load() (in module pysatNASA.instruments.icon_euv), 18
load() (in module pysatNASA.instruments.icon_fuv), 20
load() (in module pysatNASA.instruments.icon_ivm), 21
load() (in module pysatNASA.instruments.icon_mighti),

23
load() (in module pysatNASA.instruments.ses14_gold),

27

M
module

pysatNASA.instruments.cnofs_ivm, 9
pysatNASA.instruments.cnofs_plp, 10
pysatNASA.instruments.cnofs_vefi, 11
pysatNASA.instruments.de2_lang, 12
pysatNASA.instruments.de2_nacs, 13
pysatNASA.instruments.de2_rpa, 14
pysatNASA.instruments.de2_wats, 16
pysatNASA.instruments.formosat1_ivm, 17
pysatNASA.instruments.icon_euv, 17
pysatNASA.instruments.icon_fuv, 19

49

pysatNASA Documentation, Release 0.0.3-alpha

pysatNASA.instruments.icon_ivm, 21
pysatNASA.instruments.icon_mighti, 22
pysatNASA.instruments.iss_fpmu, 24
pysatNASA.instruments.omni_hro, 24
pysatNASA.instruments.ses14_gold, 26
pysatNASA.instruments.timed_saber, 27
pysatNASA.instruments.timed_see, 28

P
preprocess() (in module pysat-

NASA.instruments.cnofs_ivm), 10
preprocess() (in module pysat-

NASA.instruments.icon_euv), 19
preprocess() (in module pysat-

NASA.instruments.icon_fuv), 20
preprocess() (in module pysat-

NASA.instruments.icon_ivm), 22
preprocess() (in module pysat-

NASA.instruments.icon_mighti), 24
pysatNASA.instruments.cnofs_ivm

module, 9
pysatNASA.instruments.cnofs_plp
module, 10

pysatNASA.instruments.cnofs_vefi
module, 11

pysatNASA.instruments.de2_lang
module, 12

pysatNASA.instruments.de2_nacs
module, 13

pysatNASA.instruments.de2_rpa
module, 14

pysatNASA.instruments.de2_wats
module, 16

pysatNASA.instruments.formosat1_ivm
module, 17

pysatNASA.instruments.icon_euv
module, 17

pysatNASA.instruments.icon_fuv
module, 19

pysatNASA.instruments.icon_ivm
module, 21

pysatNASA.instruments.icon_mighti
module, 22

pysatNASA.instruments.iss_fpmu
module, 24

pysatNASA.instruments.omni_hro
module, 24

pysatNASA.instruments.ses14_gold
module, 26

pysatNASA.instruments.timed_saber
module, 27

pysatNASA.instruments.timed_see
module, 28

T
time_shift_to_magnetic_poles() (in module pysat-

NASA.instruments.omni_hro), 26

50 Index

	Overview
	Installation
	Prerequisites
	Installation Options
	Post Installation

	Citation Guidelines
	pysatNASA

	Supported Instruments
	C/NOFS IVM
	References
	Properties
	Warnings

	C/NOFS PLP
	References
	Properties
	Warnings

	C/NOFS VEFI
	References
	Properties
	Note
	Warnings

	DE2 LANG
	References
	Properties
	Warnings

	DE2 NACS
	References
	Properties
	Warnings

	DE2 RPA
	References
	Properties
	Warnings

	DE2 WATS
	References
	Properties
	Warnings

	FORMOSAT-1 IVM
	Properties
	Warnings

	ICON EUV
	Properties
	Warnings
	Examples

	ICON FUV
	Properties
	Warnings
	Example

	ICON IVM
	Properties
	Example
	Author

	ICON MIGHTI
	Properties
	Warnings
	Example
	Note

	ISS FPMU
	Properties
	Warnings

	OMNI HRO
	Properties
	Note
	Warnings
	Custom Functions

	SES14 GOLD
	Properties
	Warnings
	Examples

	TIMED SABER
	Properties
	Note
	Warnings

	TIMED SEE
	Properties
	Note
	Warnings

	Supported Constellations
	DE2
	ICON

	Examples
	Loading ICON IVM data

	Guide for Developers
	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Contributing
	Short version
	Bug reports
	Feature requests and feedback
	Development
	Pull Request Guidelines
	Project Style Guidelines

	Migration from pysat 2
	Registering the pysatNASA library
	Modifying the directory structure
	A Note about ICON data

	Change Log
	[0.0.3] - 2022-05-18
	[0.0.2] - 2021-06-07
	[0.0.1] - 2020-08-13

	Indices and tables
	Python Module Index
	Index

